
Modoboa Documentation
Release 1.8.1

Antoine Nguyen

Jul 07, 2017

Contents

1 Overview 3

2 Table of contents 5

i

ii

Modoboa Documentation, Release 1.8.1

Contents 1

Modoboa Documentation, Release 1.8.1

2 Contents

CHAPTER 1

Overview

Modoboa is a mail hosting and management platform including a modern and simplified Web User Interface designed
to work with Postfix and Dovecot.

It is extensible by nature and comes with a lot of additional extensions:

Name Description Documentation
modoboa-amavis A frontend for Amavis https:

//modoboa-amavis.readthedocs.io
modoboa-dmarc A set of tools to use DMARC https://github.com/modoboa/

modoboa-dmarc
modoboa-imap-
migration

Migrate mailboxes from an existing server using
IMAP (and offlineimap)

https://github.com/modoboa/
modoboa-imap-migration

modoboa-
pdfcredentials

Generate PDF documents containing account
credentials

https://github.com/modoboa/
modoboa-pdfcredentials

modoboa-
pfxadmin-migrate

A tool to migrate from Postfixadmin https://github.com/modoboa/
modoboa-pfxadmin-migrate

modoboa-postfix-
autoreply

Away message editor (postfix compatible) https://modoboa-postfix-autoreply.
readthedocs.io

modoboa-radicale A frontend for Radicale https:
//modoboa-radicale.readthedocs.io

modoboa-
sievefilters

A Sieve filters (rules) editor https:
//modoboa-sievefilters.readthedocs.io

modoboa-stats Graphical statistics (message traffic and more) https://modoboa-stats.readthedocs.io
modoboa-webmail A simple webmail https:

//modoboa-webmail.readthedocs.io

3

http://www.postfix.org
http://www.dovecot.org
https://github.com/modoboa/modoboa-amavis
http://www.amavis.org
https://modoboa-amavis.readthedocs.io
https://modoboa-amavis.readthedocs.io
https://github.com/modoboa/modoboa-dmarc
https://dmarc.org
https://github.com/modoboa/modoboa-dmarc
https://github.com/modoboa/modoboa-dmarc
https://github.com/modoboa/modoboa-imap-migration
https://github.com/modoboa/modoboa-imap-migration
https://github.com/modoboa/modoboa-imap-migration
https://github.com/modoboa/modoboa-imap-migration
https://github.com/modoboa/modoboa-pdfcredentials
https://github.com/modoboa/modoboa-pdfcredentials
https://github.com/modoboa/modoboa-pdfcredentials
https://github.com/modoboa/modoboa-pdfcredentials
https://github.com/modoboa/modoboa-pfxadmin-migrate
https://github.com/modoboa/modoboa-pfxadmin-migrate
https://github.com/modoboa/modoboa-pfxadmin-migrate
https://github.com/modoboa/modoboa-pfxadmin-migrate
https://github.com/modoboa/modoboa-postfix-autoreply
https://github.com/modoboa/modoboa-postfix-autoreply
https://modoboa-postfix-autoreply.readthedocs.io
https://modoboa-postfix-autoreply.readthedocs.io
https://github.com/modoboa/modoboa-radicale
http://radicale.org
https://modoboa-radicale.readthedocs.io
https://modoboa-radicale.readthedocs.io
https://github.com/modoboa/modoboa-sievefilters
https://github.com/modoboa/modoboa-sievefilters
https://modoboa-sievefilters.readthedocs.io
https://modoboa-sievefilters.readthedocs.io
https://github.com/modoboa/modoboa-stats
https://modoboa-stats.readthedocs.io
https://github.com/modoboa/modoboa-webmail
https://modoboa-webmail.readthedocs.io
https://modoboa-webmail.readthedocs.io

Modoboa Documentation, Release 1.8.1

4 Chapter 1. Overview

CHAPTER 2

Table of contents

Installation

Recommended way

If you start from scratch and want to deploy a complete mail server, you will love the modoboa installer! It is the
easiest and the quickest way to setup a fully functional server (modoboa, postfix, dovecot, amavis and more) on one
machine.

Warning: For now, only Debian and CentOS based Linux distributions are supported. We do our best to improve
compatibility but if you use another Linux or a UNIX system, you will have to install Modoboa manually.

To use it, just run the following commands in your terminal:

> git clone https://github.com/modoboa/modoboa-installer
> cd modoboa-installer
> sudo ./run.py <your domain>

Wait a few minutes and you’re done o/

Manual installation

For those who need a manual installation or who just want to setup a specific part, here are the steps you must follow:

Modoboa

This section describes the installation of the web interface (a Django project).

5

https://github.com/modoboa/modoboa-installer
https://www.djangoproject.com/

Modoboa Documentation, Release 1.8.1

Prepare the system

First of all, we recommand the following context:

• Use a dedicated system user

• Use a virtualenv to install the application because it will isolate it (and its dependencies) from the rest of your
system

The following example illustrates how to realize this (Debian like system):

> sudo apt-get install python-virtualenv python-pip
> sudo useradd modoboa
> sudo -i modoboa
> virtualenv env
> source env/bin/activate
(env)> pip install -U pip

Modoboa depends on external tools and some of them require compilation so you need a compiler and a few C libraries.
Make sure to install the following system packages according to your distribution:

Debian/Ubuntu CentOS
build-essential, python-dev, libxml2-dev,
libxslt-dev, libjpeg-dev, librrd-dev, rrdtool,
libffi-dev

gcc, gcc-c++, python-devel, libxml2-devel, libxslt-devel,
libjpeg-turbo-devel, rrdtool-devel, rrdtool, libffi-devel

Then, install Modoboa:

(env)> pip install modoboa

Database

Warning: This documentation does not cover the installation of a database server but only the setup of a functional
database that Modoboa will use.

Thanks to Django, Modoboa is compatible with the following databases:

• PostgreSQL

• MySQL / MariaDB

• SQLite

Since the last one does not require particular actions, only the first two ones are described.

PostgreSQL

Install the corresponding Python binding:

(env)> pip install psycopg2

Then, create a user and a database:

> sudo -i postgres
>

6 Chapter 2. Table of contents

http://www.virtualenv.org/en/latest/

Modoboa Documentation, Release 1.8.1

MySQL / MariaDB

Install the corresponding Python binding:

(env)> pip install MySQL-Python

Then, create a user and a database:

> mysqladmin -u root -p create modoboa

Deploy an instance

modoboa-admin.py, a command line tool, lets you deploy a ready-to-use Modoboa site using only one instruction:

(env)> modoboa-admin.py deploy instance --collectstatic \
--domain <hostname of your server> --dburl default:database-url

Note: You can install additional extensions during the deploy process. To do so, use the --extensions op-
tion which accepts a list of names as argument (--extensions ext1 ext2 ...). If you want to install all
extensions, just use the all keyword like this --extensions all.

If you choose to install extensions one at a time, you will have to add their names in settings.py to MODOBOA_APPS.
Also ensure that you have the line from modoboa_amavis.settings import * at the end of this file.

The list of available extensions can be found on the index page. Instructions to install them are available on each
extensions page.

Note: You can specify more than one database connection using the --dburl option. Multiple connections are
differentiated by a prefix.

The primary connection must use the default: prefix (as shown in the example above). For the amavis exten-
sion, use the amavis: prefix. For example: --dburl default:<database url> amavis:<database
url>.

A database url should meet the following syntax <mysql|postgres>://[user:pass@][host:port]/
dbname OR sqlite:////full/path/to/your/database/file.sqlite.

The command will ask you a few questions, answer them and you’re done.

If you need a silent installation (e.g. if you’re using Salt-Stack, Ansible or whatever), it’s possible to supply the
database credentials as commandline arguments.

You can consult the complete option list by running the following command:

$ modoboa-admin.py help deploy

Cron jobs

A few recurring jobs must be configured to make Modoboa works as expected.

Create a new file, for example /etc/cron.d/modoboa and put the following content inside:

2.1. Installation 7

http://modoboa-amavis.readthedocs.org

Modoboa Documentation, Release 1.8.1

#
Modoboa specific cron jobs
#
PYTHON=<PATH TO PYTHON BINARY>
INSTANCE=<PATH TO MODOBOA INSTANCE>

Operations on mailboxes

* * * * * vmail $PYTHON $INSTANCE/manage.py handle_
→˓mailbox_operations

Sessions table cleanup
0 0 * * * root $PYTHON $INSTANCE/manage.py
→˓clearsessions

Logs table cleanup
0 0 * * * root $PYTHON $INSTANCE/manage.py cleanlogs

Logs parsing

*/5 * * * * root $PYTHON $INSTANCE/manage.py logparser
→˓&> /dev/null

DNSBL checks

*/30 * * * * root $PYTHON $INSTANCE/manage.py modo
→˓check_mx

Public API communication
0 * * * * root $PYTHON $INSTANCE/manage.py
→˓communicate_with_public_api

Now you can continue to the Web server section.

Web server

Note: The following instructions are meant to help you get your site up and running quickly. However it is not
possible for the people contributing documentation to Modoboa to test every single combination of web server, wsgi
server, distribution, etc. So it is possible that your installation of uwsgi or nginx or Apache or what-have-you works
differently. Keep this in mind.

Apache2

First, make sure that mod_wsgi is installed on your server.

Create a new virtualhost in your Apache configuration and put the following content inside:

<VirtualHost *:80>
ServerName <your value>
DocumentRoot <modoboa_instance_path>

Alias /media/ <modoboa_instance_path>/media/
<Directory <modoboa_instance_path>/media>
Order deny,allow
Allow from all

</Directory>

8 Chapter 2. Table of contents

Modoboa Documentation, Release 1.8.1

Alias /sitestatic/ <modoboa_instance_path>/sitestatic/
<Directory <modoboa_instance_path>/sitestatic>
Order deny,allow
Allow from all

</Directory>

WSGIScriptAlias / <modoboa_instance_path>/<instance_name>/wsgi.py

</VirtualHost>

This is just one possible configuration.

To use mod_wsgi daemon mode, add the two following directives just under WSGIScriptAlias:

WSGIDaemonProcess example.com python-path=<modoboa_instance>:<virtualenv path>/lib/
→˓python2.7/site-packages
WSGIProcessGroup example.com

Replace values between <> with yours. If you don’t use a virtualenv, just remove the last part of the
WSGIDaemonProcess directive.

Note: You will certainly need more configuration in order to launch Apache.

Now, you can go the Dovecot section to continue the installation.

Nginx

This section covers two different ways of running Modoboa behind Nginx using a WSGI application server. Choose
the one you prefer between Green Unicorn or uWSGI.

In both cases, you’ll need to download and install nginx.

Green Unicorn

Firstly, Download and install gunicorn. Then, use the following sample gunicorn configuration (create a new file
named gunicorn.conf.py inside Modoboa’s root dir):

backlog = 2048
bind = "unix:/var/run/gunicorn/modoboa.sock"
pidfile = "/var/run/gunicorn/modoboa.pid"
daemon = True
debug = False
workers = 2
logfile = "/var/log/gunicorn/modoboa.log"
loglevel = "info"

To start gunicorn, execute the following commands:

$ cd <modoboa dir>
$ gunicorn -c gunicorn.conf.py <modoboa dir>.wsgi:application

Now the nginx part. Just create a new virtual host and use the following configuration:

2.1. Installation 9

http://virtualenv.readthedocs.org/en/latest/
http://nginx.org/
http://gunicorn.org/
https://github.com/unbit/uwsgi
http://wiki.nginx.org/Install
http://gunicorn.org/install.html

Modoboa Documentation, Release 1.8.1

upstream modoboa {
server unix:/var/run/gunicorn/modoboa.sock fail_timeout=0;

}

server {
listen 443 ssl;
ssl on;
keepalive_timeout 70;

server_name <host fqdn>;
root <modoboa_instance_path>;

access_log /var/log/nginx/<host fqdn>.access.log;
error_log /var/log/nginx/<host fqdn>.error.log;

ssl_certificate <ssl certificate for your site>;
ssl_certificate_key <ssl certificate key for your site>;

location /sitestatic/ {
autoindex on;

}

location /media/ {
autoindex on;

}

location / {
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_set_header Host $http_host;
proxy_redirect off;
proxy_set_header X-Forwarded-Protocol ssl;
proxy_pass http://modoboa;

}
}

If you do not plan to use SSL then change the listen directive to listen 80; and delete each of the following
directives:

ssl on;
keepalive_timeout 70;
ssl_certificate <ssl certificate for your site>;
ssl_certificate_key <ssl certificate key for your site>;
proxy_set_header X-Forwarded-Protocol ssl;

If you do plan to use SSL, you’ll have to generate a certificate and a key. This article contains information about how
to do it.

Paste this content to your configuration (replace values between <> with yours) and restart nginx.

Now, you can go the Dovecot section to continue the installation.

uWSGI

The following setup is meant to get you started quickly. You should read the documentation of both nginx and uwsgi
to understand how to optimize their configuration for your site.

The Django documentation includes the following warning regarding uwsgi:

10 Chapter 2. Table of contents

http://wiki.nginx.org/HttpSslModule#Generate_Certificates

Modoboa Documentation, Release 1.8.1

Warning: Some distributions, including Debian and Ubuntu, ship an outdated version of uWSGI that does not
conform to the WSGI specification. Versions prior to 1.2.6 do not call close on the response object after handling
a request. In those cases the request_finished signal isn’t sent. This can result in idle connections to database and
memcache servers.

Use uwsgi 1.2.6 or newer. If you do not, you will run into problems. Modoboa will fail in obscure ways.

To use this setup, first download and install uwsgi.

Here is a sample nginx configuration:

server {
listen 443 ssl;
ssl on;
keepalive_timeout 70;

server_name <host fqdn>;
root <modoboa's settings dir>;

ssl_certificate <ssl certificate for your site>;
ssl_certificate_key <ssl certificate key for your site>;

access_log /var/log/nginx/<host fqdn>.access.log;
error_log /var/log/nginx/<host fqdn>.error.log;

location <modoboa's root url>/sitestatic/ {
autoindex on;
alias <location of sitestatic on your file system>;

}

Whether or not Modoboa uses a media directory depends on how
you configured Modoboa. It does not hurt to have this.
location <modoboa's root url>/media/ {

autoindex on;
alias <location of media on your file system>;

}

This denies access to any file that begins with
".ht". Apache's .htaccess and .htpasswd are such files. A
Modoboa installed from scratch would not contain any such
files, but you never know what the future holds.
location ~ /\.ht {

deny all;
}

location <modoba's root url>/ {
include uwsgi_params;
uwsgi_pass <uwsgi port>;
uwsgi_param UWSGI_SCRIPT <modoboa instance name>.wsgi:application;
uwsgi_param UWSGI_SCHEME https;

}
}

<modoboa instance name> must be replaced by the value you used when you deployed your instance.

If you do not plan to use SSL then change the listen directive to listen 80; and delete each of the following
directives:

2.1. Installation 11

http://uwsgi-docs.readthedocs.org/en/latest/WSGIquickstart.html

Modoboa Documentation, Release 1.8.1

ssl on;
keepalive_timeout 70;
ssl_certificate <ssl certificate for your site>;
ssl_certificate_key <ssl certificate key for your site>;
uwsgi_param UWSGI_SCHEME https;

If you do plan to use SSL, you’ll have to generate a certificate and a key. This article contains information about how
to do it.

Make sure to replace the <...> in the sample configuration with appropriate values. Here are some explanations for
the cases that may not be completely self-explanatory:

<modoboa's settings dir> Where Modoboa’s settings.py resides. This is also where the
sitestatic and media directories reside.

<modoboa's root url> This is the URL which will be the root of your Modoboa site at your domain. For in-
stance, if your Modoboa installation is reachable at at https://foo/modoboa then <modoboa's root
url> is /modoboa. In this case you probably also have to set the alias directives to point to where Mod-
oboa’s sitestatic and media directories are because otherwise nginx won’t be able to find them.

If Modoboa is at the root of your domain, then <modoboa root url> is an empty string and can be deleted
from the configuration above. In this case, you probably do not need the alias directives.

<uwsgi port> The location where uwsig is listening. It could be a unix domain socket or an address:port combi-
nation. Ubuntu configures uwsgi so that the port is:

unix:/run/uwsgi/app/<app name>/socket

where <app name> is the name of the application.

Your uwsgi configuration should be:

[uwsgi]
Not needed when using uwsgi from pip
plugins = python
chdir = <modoboa's top dir>
module = <name>.wsgi:application
master = true
harakiri = 60
processes = 4
vhost = true
no-default-app = true

The plugins directive should be turned on if you use a uwsgi installation that requires it. If uwsgi was installed from
pip, it does not require it. In the configuration above:

<modoboa's top dir> The directory where manage.py resides. This directory is the parent of <modoboa's
settings dir>

<name> The name that you passed to modoboa-admin.py deploy when you created your Modoboa instance.

Now, you can go the Dovecot section to continue the installation.

Dovecot

Modoboa requires Dovecot 2+ to work so the following documentation is suitable for this combination.

In this section, we assume dovecot’s configuration resides in /etc/dovecot, all pathes will be relative to this
directory.

12 Chapter 2. Table of contents

http://wiki.nginx.org/HttpSslModule#Generate_Certificates

Modoboa Documentation, Release 1.8.1

Mailboxes

First, edit the conf.d/10-mail.conf and set the mail_location variable:

maildir
mail_location = maildir:~/.maildir

Then, edit the inbox namespace and add the following lines:

inbox = yes

mailbox Drafts {
auto = subscribe
special_use = \Drafts

}
mailbox Junk {

auto = subscribe
special_use = \Junk

}
mailbox Sent {

auto = subscribe
special_use = \Sent

}
mailbox Trash {

auto = subscribe
special_use = \Trash

}

With dovecot 2.1+, it ensures all the special mailboxes will be automaticaly created for new accounts.

For dovecot 2.0 and older, use the autocreate plugin.

Operations on the file system

Warning: Modoboa needs to access the dovecot binary to check its version. To find the binary path, we
use the which command first and then try known locations (/usr/sbin/dovecot and /usr/local/
sbin/dovecot). If you installed dovecot in a custom location, please tell us where the binary is by using
the DOVECOT_LOOKUP_PATH setting (see settings.py).

Three operation types are considered:

1. Mailbox creation

2. Mailbox renaming

3. Mailbox deletion

The first one is managed by Dovecot. The last two ones may be managed by Modoboa if it can access the file system
where the mailboxes are stored (see General parameters to activate this feature).

Those operations are treated asynchronously by a cron script. For example, when you rename an e-mail address
through the web UI, the associated mailbox on the file system is not modified directly. Instead of that, a rename order
is created for this mailbox. The mailbox will be considered unavailable until the order is not executed (see Postfix
configuration).

Edit the crontab of the user who owns the mailboxes on the file system:

2.1. Installation 13

http://wiki2.dovecot.org/Plugins/Autocreate

Modoboa Documentation, Release 1.8.1

$ crontab -u <user> -e

And add the following line inside:

* * * * * python <modoboa_site>/manage.py handle_mailbox_operations

Warning: The cron script must be executed by the system user owning the mailboxes.

Warning: The user running the cron script must have access to the settings.py file of the modoboa instance.

The result of each order is recorded into Modoboa’s log. Go to Modoboa > Logs to consult them.

Authentication

To make the authentication work, edit the conf.d/10-auth.conf and uncomment the following line at the end:

#!include auth-system.conf.ext
!include auth-sql.conf.ext
#!include auth-ldap.conf.ext
#!include auth-passwdfile.conf.ext
#!include auth-checkpassword.conf.ext
#!include auth-vpopmail.conf.ext
#!include auth-static.conf.ext

Then, edit the conf.d/auth-sql.conf.ext file and add the following content inside:

passdb sql {
driver = sql
Path for SQL configuration file, see example-config/dovecot-sql.conf.ext
args = /etc/dovecot/dovecot-sql.conf.ext

}

userdb sql {
driver = sql
args = /etc/dovecot/dovecot-sql.conf.ext

}

Make sure to activate only one backend (per type) inside your configuration (just comment the other ones).

Edit the dovecot-sql.conf.ext and modify the configuration according to your database engine.

MySQL users

driver = mysql

connect = host=<mysqld socket> dbname=<database> user=<user> password=<password>

default_pass_scheme = CRYPT

password_query = SELECT email AS user, password FROM core_user WHERE email='%Lu' and
→˓is_active=1

14 Chapter 2. Table of contents

Modoboa Documentation, Release 1.8.1

user_query = SELECT '<mailboxes storage directory>/%Ld/%Ln' AS home, <uid> as uid,
→˓<gid> as gid, concat('*:bytes=', mb.quota, 'M') AS quota_rule FROM admin_mailbox mb
→˓INNER JOIN admin_domain dom ON mb.domain_id=dom.id WHERE mb.address='%Ln' AND dom.
→˓name='%Ld'

iterate_query = SELECT email AS user FROM core_user

PostgreSQL users

driver = pgsql

connect = host=<postgres socket> dbname=<database> user=<user> password=<password>

default_pass_scheme = CRYPT

password_query = SELECT email AS user, password FROM core_user u INNER JOIN admin_
→˓mailbox mb ON u.id=mb.user_id INNER JOIN admin_domain dom ON mb.domain_id=dom.id
→˓WHERE u.email='%Lu' AND u.is_active AND dom.enabled

user_query = SELECT '<mailboxes storage directory>/%Ld/%Ln' AS home, <uid> as uid,
→˓<gid> as gid, '*:bytes=' || mb.quota || 'M' AS quota_rule FROM admin_mailbox mb
→˓INNER JOIN admin_domain dom ON mb.domain_id=dom.id WHERE mb.address='%Ln' AND dom.
→˓name='%Ld'

iterate_query = SELECT email AS user FROM core_user

SQLite users

driver = sqlite

connect = <path to the sqlite db file>

default_pass_scheme = CRYPT

password_query = SELECT email AS user, password FROM core_user u INNER JOIN admin_
→˓mailbox mb ON u.id=mb.user_id INNER JOIN admin_domain dom ON mb.domain_id=dom.id
→˓WHERE u.email='%Lu' AND u.is_active=1 AND dom.enabled=1

user_query = SELECT '<mailboxes storage directory>/%Ld/%Ln' AS home, <uid> as uid,
→˓<gid> as gid, ('*:bytes=' || mb.quota || 'M') AS quota_rule FROM admin_mailbox mb
→˓INNER JOIN admin_domain dom ON mb.domain_id=dom.id WHERE mb.address='%Ln' AND dom.
→˓name='%Ld'

iterate_query = SELECT email AS user FROM core_user

Note: Replace values between <> with yours.

2.1. Installation 15

Modoboa Documentation, Release 1.8.1

LMTP

Local Mail Transport Protocol is used to let Postfix deliver messages to Dovecot.

First, make sure the protocol is activated by looking at the protocols setting (generally inside dovecot.conf).
It should be similar to the following example:

protocols = imap pop3 lmtp

Then, open the conf.d/10-master.conf, look for lmtp service definition and add the following content inside:

service lmtp {
stuff before
unix_listener /var/spool/postfix/private/dovecot-lmtp {
mode = 0600
user = postfix
group = postfix

}
stuff after

}

We assume here that Postfix is chrooted within /var/spool/postfix.

Finally, open the conf.d/20-lmtp.conf and modify it as follows:

protocol lmtp {
postmaster_address = postmaster@<domain>
mail_plugins = $mail_plugins quota sieve

}

Replace <domain> by the appropriate value.

Note: If you don’t plan to apply quota or to use filters, just adapt the content of the mail_plugins setting.

Quota

Modoboa lets adminstrators define per-domain and/or per-account limits (quota). It also lists the current quota usage
of each account. Those features require Dovecot to be configured in a specific way.

Inside conf.d/10-mail.conf, add the quota plugin to the default activated ones:

mail_plugins = quota

Inside conf.d/10-master.conf, update the dict service to set proper permissions:

service dict {
If dict proxy is used, mail processes should have access to its socket.
For example: mode=0660, group=vmail and global mail_access_groups=vmail
unix_listener dict {
mode = 0600
user = <user owning mailboxes>
#group =

}
}

16 Chapter 2. Table of contents

http://en.wikipedia.org/wiki/Local_Mail_Transfer_Protocol

Modoboa Documentation, Release 1.8.1

Inside conf.d/20-imap.conf, activate the imap_quota plugin:

protocol imap {
...

mail_plugins = $mail_plugins imap_quota

...
}

Inside dovecot.conf, activate the quota SQL dictionary backend:

dict {
quota = <driver>:/etc/dovecot/dovecot-dict-sql.conf.ext

}

Inside conf.d/90-quota.conf, activate the quota dictionary backend:

plugin {
quota = dict:User quota::proxy::quota

}

It will tell Dovecot to keep quota usage in the SQL dictionary.

Finally, edit the dovecot-dict-sql.conf.ext file and put the following content inside:

connect = host=<db host> dbname=<db name> user=<db user> password=<password>
SQLite users
connect = /path/to/the/database.db

map {
pattern = priv/quota/storage
table = admin_quota
username_field = username
value_field = bytes

}
map {

pattern = priv/quota/messages
table = admin_quota
username_field = username
value_field = messages

}

PostgreSQL users

Database schema update

The admin_quota table is created by Django but unfortunately it doesn’t support DEFAULT constraints (it only
simulates them when the ORM is used). As PostgreSQL is a bit strict about constraint violations, you must execute
the following query manually:

db=> ALTER TABLE admin_quota ALTER COLUMN bytes SET DEFAULT 0;
db=> ALTER TABLE admin_quota ALTER COLUMN messages SET DEFAULT 0;

2.1. Installation 17

Modoboa Documentation, Release 1.8.1

Trigger

As indicated on Dovecot’s wiki, you need a trigger to properly update the quota.

A working copy of this trigger is available on Modoboa’s website.

Download this file and copy it on the server running postgres. Then, execute the following commands:

$ su - postgres
$ psql [modoboa database] < /path/to/modoboa_postgres_trigger.sql
$ exit

Replace [modoboa database] by the appropriate value.

Forcing recalculation

For existing installations, Dovecot (> 2) offers a command to recalculate the current quota usages. For example, if you
want to update all usages, run the following command:

$ doveadm quota recalc -A

Be carefull, it can take a while to execute.

ManageSieve/Sieve

Modoboa lets users define filtering rules from the web interface. To do so, it requires ManageSieve to be activated on
your server.

Inside conf.d/20-managesieve.conf, make sure the following lines are uncommented:

protocols = $protocols sieve

service managesieve-login {
...

}

service managesieve {
...

}

protocol sieve {
...

}

Messages filtering using Sieve is done by the LDA.

Inside conf.d/15-lda.conf, activate the sieve plugin like this:

protocol lda {
Space separated list of plugins to load (default is global mail_plugins).
mail_plugins = $mail_plugins sieve

}

Finally, configure the sieve plugin by editing the conf.d/90-sieve.conf file. Put the follwing caontent inside:

18 Chapter 2. Table of contents

http://wiki2.dovecot.org/Quota/Dict
http://modoboa.org/resources/modoboa_postgres_trigger.sql

Modoboa Documentation, Release 1.8.1

plugin {
Location of the active script. When ManageSieve is used this is actually
a symlink pointing to the active script in the sieve storage directory.
sieve = ~/.dovecot.sieve

#
The path to the directory where the personal Sieve scripts are stored. For
ManageSieve this is where the uploaded scripts are stored.
sieve_dir = ~/sieve

}

Restart Dovecot.

Now, you can go to the Postfix section to finish the installation.

Postfix

This section gives an example about building a simple virtual hosting configuration with Postfix. Refer to the official
documentation for more explanation.

Map files

You first need to create configuration files (or map files) that will be used by Postfix to lookup into Modoboa tables.

To automaticaly generate the requested map files and store them in a directory, run the following command:

> cd <modoboa_instance_path>
> python manage.py generate_postfix_maps --destdir <directory>

<directory> is the directory where the files will be stored. Answer the few questions and you’re done.

Configuration

Use the following configuration in the /etc/postfix/main.cf file (this is just one possible configuration):

Stuff before
virtual_transport = lmtp:unix:private/dovecot-lmtp

relay_domains =
virtual_mailbox_domains = <driver>:/etc/postfix/sql-domains.cf
virtual_alias_domains = <driver>:/etc/postfix/sql-domain-aliases.cf
virtual_alias_maps = <driver>:/etc/postfix/sql-aliases.cf

relay_domains = <driver>:/etc/postfix/sql-relaydomains.cf
transport_maps =

<driver>:/etc/postfix/sql-spliteddomains-transport.cf
<driver>:/etc/postfix/sql-relaydomains-transport.cf

smtpd_recipient_restrictions =
...
check_recipient_access

<driver>:/etc/postfix/sql-maintain.cf
<driver>:/etc/postfix/sql-relay-recipient-verification.cf

permit_mynetworks

2.1. Installation 19

http://www.postfix.org/VIRTUAL_README.html
http://www.postfix.org/VIRTUAL_README.html

Modoboa Documentation, Release 1.8.1

reject_unauth_destination
reject_unverified_recipient
...

smtpd_sender_login_maps =
<driver>:/etc/postfix/sql-sender-login-mailboxes.cf
<driver>:/etc/postfix/sql-sender-login-aliases.cf
<driver>:/etc/postfix/sql-sender-login-mailboxes-extra.cf

smtpd_sender_restrictions =
reject_sender_login_mismatch

Stuff after

Replace <driver> by the name of the database you use.

Restart Postfix.

Extensions

Only few commands are needed to add a new extension to your setup.

In case you use a dedicated user and/or a virtualenv, do not forget to use them:

> sudo -u <modoboa_user> -i
> source <virtuenv_path>/bin/activate

Then, run the following commands:

> pip install <EXTENSION>==<VERSION>
> cd <modoboa_instance_dir>
> python manage.py migrate
> python manage.py collectstatic

Then, restart your web sever.

Upgrade

Modoboa

Warning: The new version you are going to install may need to modify your database. Before you start, make
sure to backup everything!

Most of the time, upgrading your installation to a newer Modoboa version only requires a few actions. In every case,
you will need to apply the general procedure first and then check if the version you are installing requires specific
actions.

In case you use a dedicated user and/or a virtualenv, do not forget to use them:

> sudo -u <modoboa_user> -i
> source <virtuenv_path>/bin/activate

20 Chapter 2. Table of contents

Modoboa Documentation, Release 1.8.1

Then, run the following commands:

> pip install modoboa==<VERSION>
> cd <modoboa_instance_dir>
> python manage.py migrate
> python manage.py collectstatic

Once done, check if the version you are installing requires Specific instructions.

Finally, restart your web server.

Sometimes, you might need to upgrade postfix map files too. To do so, just run the generate_postfix_maps
command on the same directory than the one used for installation (/etc/postfix by default).

Make sure to use root privileges and run the following command:

> python manage.py generate_postfix_maps --destdir <directory>

Then, reload postfix.

Extensions

If a new version is available for an extension you’re using, it is recommanded to install it. Upgrading an extensions is
pretty and the procedure is almost the same than the one used for Modoboa.

In case you use a dedicated user and/or a virtualenv, do not forget to use them:

> sudo -i <modoboa_user>
> source <virtuenv_path>/bin/activate

Then, run the following commands:

> pip install <EXTENSION>==<VERSION>
> cd <modoboa_instance_dir>
> python manage.py migrate
> python manage.py collectstatic

Finally, restart your web server.

It is a generic upgrade procedure which will be enough most of the time but it is generally a good idea to check the
associated documentation.

Specific instructions

1.8.0

Modoboa now relies on Django’s builtin password validation system to validate user passwords, instead of
django-passwords.

Remove django-passwords from your system:

> sudo -u <modoboa_user> -i
> source <virtuenv_path>/bin/activate
> pip uninstall django-passwords

Edit the settings.py file and remove the following content:

2.2. Upgrade 21

https://docs.djangoproject.com/en/1.10/topics/auth/passwords/#module-django.contrib.auth.password_validation

Modoboa Documentation, Release 1.8.1

django-passwords

PASSWORD_MIN_LENGTH = 8

PASSWORD_COMPLEXITY = {
"UPPER": 1,
"LOWER": 1,
"DIGITS": 1

}

Add the following lines:

Password validation rules
AUTH_PASSWORD_VALIDATORS = [

{
'NAME': 'django.contrib.auth.password_validation.

→˓UserAttributeSimilarityValidator',
},
{

'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator',
},
{

'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator',
},
{

'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator',
},
{

'NAME': 'modoboa.core.password_validation.ComplexityValidator',
'OPTIONS': {

'upper': 1,
'lower': 1,
'digits': 1,
'specials': 0

}
},

]

1.7.2

API documentation has evolved (because of the upgrade to Django Rest Framework 3.6) and CKeditor is now embed-
ded by default (thanks to the django-ckeditor package). Some configuration changes are required.

Edit your settings.py file and apply the following modifications:

• Update the INSTALLED_APPS variable as follows:

INSTALLED_APPS = (
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',
'django.contrib.sites',
'django.contrib.staticfiles',
'reversion',
'ckeditor',
'ckeditor_uploader',

22 Chapter 2. Table of contents

Modoboa Documentation, Release 1.8.1

'rest_framework',
'rest_framework.authtoken',

)

• Update the REST_FRAMEWORK variable as follows:

REST_FRAMEWORK = {
'DEFAULT_AUTHENTICATION_CLASSES': (

'rest_framework.authentication.TokenAuthentication',
'rest_framework.authentication.SessionAuthentication',

),
}

• Remove the SWAGGER_SETTINGS variable

• Add the following content

CKeditor

CKEDITOR_UPLOAD_PATH = "uploads/"

CKEDITOR_IMAGE_BACKEND = "pillow"

CKEDITOR_RESTRICT_BY_USER = True

CKEDITOR_BROWSE_SHOW_DIRS = True

CKEDITOR_ALLOW_NONIMAGE_FILES = False

CKEDITOR_CONFIGS = {
'default': {

'allowedContent': True,
'toolbar': 'Modoboa',
'width': None,
'toolbar_Modoboa': [

['Bold', 'Italic', 'Underline'],
['JustifyLeft', 'JustifyCenter', 'JustifyRight', 'JustifyBlock'],
['BidiLtr', 'BidiRtl', 'Language'],
['NumberedList', 'BulletedList', '-', 'Outdent', 'Indent'],
['Undo', 'Redo'],
['Link', 'Unlink', 'Anchor', '-', 'Smiley'],
['TextColor', 'BGColor', '-', 'Source'],
['Font', 'FontSize'],
['Image',],
['SpellChecker']

],
},

}

Don’t forget to run the following command:

> python manage.py collectstatic

1.7.1

If you used 1.7.0 for a fresh installation, please run the following commands:

2.2. Upgrade 23

Modoboa Documentation, Release 1.8.1

> sudo -u <modoboa_user> -i
> source <virtuenv_path>/bin/activate
> cd <modoboa_instance_dir>
> python manage.py load_initial_data

1.7.0

This version requires Django >= 1.10 so you need to make some modifications. It also brings internal API changes
which are not backward compatible so installed extensions must be upgraded too.

First of all, deactivate all installed extensions (edit the settings.py file and comment the corresponding lines in
MODOBOA_APPS).

Edit the urls.py file of your local instance and replace its content by the following one:

from django.conf.urls import include, url

urlpatterns = [
url(r'', include('modoboa.urls')),

]

Edit the settings.py and apply the following changes:

• Add 'modoboa.parameters' to MODOBOA_APPS:

MODOBOA_APPS = (
'modoboa',
'modoboa.core',
'modoboa.lib',
'modoboa.admin',
'modoboa.relaydomains',
'modoboa.limits',
'modoboa.parameters',
Modoboa extensions here.

)

• Add 'modoboa.core.middleware.LocalConfigMiddleware' to MIDDLEWARE_CLASSES:

MIDDLEWARE_CLASSES = (
'django.contrib.sessions.middleware.SessionMiddleware',
'django.middleware.common.CommonMiddleware',
'django.middleware.csrf.CsrfViewMiddleware',
'django.contrib.auth.middleware.AuthenticationMiddleware',
'django.contrib.messages.middleware.MessageMiddleware',
'django.middleware.locale.LocaleMiddleware',
'django.middleware.clickjacking.XFrameOptionsMiddleware',
'modoboa.core.middleware.LocalConfigMiddleware',
'modoboa.lib.middleware.AjaxLoginRedirect',
'modoboa.lib.middleware.CommonExceptionCatcher',
'modoboa.lib.middleware.RequestCatcherMiddleware',

)

• Modoboa used to provide a custom authentication backend (modoboa.lib.authbackends.
SimpleBackend) but it has been removed. Replace it as follows:

AUTHENTICATION_BACKENDS = (
Other backends before...

24 Chapter 2. Table of contents

Modoboa Documentation, Release 1.8.1

'django.contrib.auth.backends.ModelBackend',
)

• Remove TEMPLATE_CONTEXT_PROCESSORS and replace it by:

TEMPLATES = [
{

'BACKEND': 'django.template.backends.django.DjangoTemplates',
'DIRS': [],
'APP_DIRS': True,
'OPTIONS': {

'context_processors': [
'django.template.context_processors.debug',
'django.template.context_processors.request',
'django.contrib.auth.context_processors.auth',
'django.template.context_processors.i18n',
'django.template.context_processors.media',
'django.template.context_processors.static',
'django.template.context_processors.tz',
'django.contrib.messages.context_processors.messages',
'modoboa.core.context_processors.top_notifications',

],
'debug': False,

},
},

]

Run the following commands (load virtualenv if you use one):

> sudo -u <modoboa_user> -i
> source <virtuenv_path>/bin/activate
> cd <modoboa_instance_dir>
> python manage.py migrate
> python manage.py collectstatic

Finally, upgrade your extensions and reactivate them.

Name Version
modoboa-amavis 1.1.0
modoboa-dmarc 1.0.0
modoboa-imap-migration 1.1.0
modoboa-pdfcredentials 1.1.0
modoboa-postfix-autoreply 1.2.0
modoboa-radicale 1.1.0
modoboa-sievefilters 1.1.0
modoboa-stats 1.1.0
modoboa-webmail 1.1.0

Command line shortcuts:

$ pip install modoboa-amavis==1.1.0
$ pip install modoboa-dmarc==1.0.0
$ pip install modoboa-imap-migration==1.1.0
$ pip install modoboa-pdfcredentials==1.1.0
$ pip install modoboa-postfix-autoreply==1.2.0
$ pip install modoboa-radicale==1.1.0
$ pip install modoboa-sievefilters==1.1.0

2.2. Upgrade 25

Modoboa Documentation, Release 1.8.1

$ pip install modoboa-stats==1.1.0
$ pip install modoboa-webmail==1.1.0

And please make sure you use the latest version of the django-versionfield2 package:

$ pip install -U django-versionfield2

Notes about quota changes and resellers

Reseller users now have a quota option in Resources tab. This is the quota that a reseller can share between all its
domains.

There are two quotas for a domain in the new version:

1. Quota &

2. Default mailbox quota.

[1]. Quota: quota shared between mailboxes This quota is shared between all the mailboxes of this domain. This value
cannot exceed reseller’s quota and hence cannot be 0(unlimited) if reseller has finite quota.

[2]. Default mailbox quota: default quota applied to mailboxes This quota is the default quota applied to new mail-
boxes. This value cannot exceed Quota[1] and hence cannot be 0(unlimited) if Quota[1] is finite.

1.6.1

First of all, update postfix map files as follows:

> python manage.py generate_postfix_maps --destdir <path> --force-overwrite

Then, modify postfix’s configuration as follows:

smtpd_sender_login_maps =
<driver>:<path>/sql-sender-login-mailboxes.cf
<driver>:<path>/sql-sender-login-aliases.cf
<driver>:<path>/sql-sender-login-mailboxes-extra.cf

Replace <driver> and <path> by your values.

Finally, reload postfix.

This release also deprecates some internal functions. As a result, several extensions has been updated to maintain the
compatibility. If you enabled the notification service, you’ll find the list of available updates directly in your Modoboa
console.

For the others, here is the list:

Name Version
modoboa-amavis 1.0.10
modoboa-postfix-autoreply 1.1.7
modoboa-radicale 1.0.5
modoboa-stats 1.0.9

Command line shortcut:

26 Chapter 2. Table of contents

Modoboa Documentation, Release 1.8.1

$ pip install modoboa-amavis==1.0.10
$ pip install modoboa-postfix-autoreply==1.1.7
$ pip install modoboa-radicale==1.0.5
$ pip install modoboa-stats==1.0.9

1.6.0

Warning: You have to upgrade extensions due to core.User model attribute change (user.group to user.role). Oth-
erwise, you will have an internal error after upgrade. In particular: modoboa-amavisd, modoboa-stats, modoboa-
postfix-autoreply are concerned.

An interesting feature brougth by this version is the capability to make different checks about MX records. For
example, Modoboa can query main DNSBL providers for every defined domain. With this, you will quickly know if
one the domains you manage is listed or not. To activate it, add the following line to your crontab:

*/30 * * * * <optional_virtualenv_path/>python <modoboa_instance_dir>/manage.py modo
→˓check_mx

The communication with Modoboa public API has been reworked. Instead of sending direct synchronous queries (for
example to check new versions), a cron job has been added. To activate it, add the following line to your crontab:

0 * * * * <optional_virtualenv_path/>python <modoboa_instance_dir>/manage.py
→˓communicate_with_public_api

Please also note that public API now uses TLS so you must update your configuration as follows:

MODOBOA_API_URL = 'https://api.modoboa.org/1/'

Finally, it is now possible to declare additional sender addresses on a per-account basis. You need to update your postfix
configuration in order to use this functionality. Just edit the main.cf file and change the following parameter:

smtpd_sender_login_maps =
<driver>:/etc/postfix/sql-sender-login-mailboxes.cf
<driver>:/etc/postfix/sql-sender-login-aliases.cf
<driver>:/etc/postfix/sql-sender-login-mailboxes-extra.cf

1.5.0

The API has been greatly improved and a documentation is now available. To enable it, add
'rest_framework_swagger' to the INSTALLED_APPS variable in settings.py as follows:

INSTALLED_APPS = (
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',
'django.contrib.sites',
'django.contrib.staticfiles',
'reversion',
'rest_framework.authtoken',
'rest_framework_swagger',

)

2.2. Upgrade 27

https://github.com/modoboa/modoboa-amavis/commit/35df4e48b124e56df930cda8c013af0c1fcaabf3
https://github.com/modoboa/modoboa-stats/commit/aa4a39ce65eb306ad6dec30a54eb58945b120274
https://github.com/modoboa/modoboa-postfix-autoreply/commit/20f98c8d1c0c0dbd420f47aefcbb0290022414a4
https://github.com/modoboa/modoboa-postfix-autoreply/commit/20f98c8d1c0c0dbd420f47aefcbb0290022414a4
https://en.wikipedia.org/wiki/DNSBL

Modoboa Documentation, Release 1.8.1

Then, add the following content into settings.py, just after the REST_FRAMEWORK variable:

SWAGGER_SETTINGS = {
"is_authenticated": False,
"api_version": "1.0",
"exclude_namespaces": [],
"info": {

"contact": "contact@modoboa.com",
"description": ("Modoboa API, requires a valid token."),
"title": "Modoboa API",

}
}

You’re done. The documentation is now available at the following address:

http://<your instance address>/docs/api/

Finally, if you find a TEMPLATE_CONTEXT_PROCESSORS variable in your settings.py file, make sure it looks
like this:

TEMPLATE_CONTEXT_PROCESSORS = global_settings.TEMPLATE_CONTEXT_PROCESSORS + [
'modoboa.core.context_processors.top_notifications',

]

1.4.0

Warning: Please make sure to use Modoboa 1.3.5 with an up-to-date database before an upgrade to 1.4.0.

Warning: Do not follow the regular upgrade procedure for this version.

Some extension have been moved back into the main repository. The main reason for that is that using Modoboa
without them doesn’t make sense.

First of all, you must rename the following applications listed inside the MODOBOA_APPS variable:

Old name New name
modoboa_admin modoboa.admin
modoboa_admin_limits modoboa.limits
modoboa_admin_relaydomains modoboa.relaydomains

Then, apply the following steps:

1. Uninstall old extensions:

$ pip uninstall modoboa-admin modoboa-admin-limits modoboa-admin-relaydomains

2. Install all extension updates using pip (check the Modoboa > Information page)

3. Manually migrate database:

$ cd <instance_dir>
$ python manage.py migrate auth
$ python manage.py migrate admin 0001 --fake
$ python manage.py migrate admin
$ python manage.py migrate limits 0001 --fake

28 Chapter 2. Table of contents

http:/

Modoboa Documentation, Release 1.8.1

$ python manage.py migrate relaydomains 0001 --fake
$ python manage.py migrate

4. Finally, update static files:

$ python manage.py collectstatic

This version also introduces a REST API. To enable it:

1. Add 'rest_framework.authtoken' to the INSTALLED_APPS variable

2. Add the following configuration inside settings.py:

Rest framework settings

REST_FRAMEWORK = {
'DEFAULT_AUTHENTICATION_CLASSES': (

'rest_framework.authentication.TokenAuthentication',
),
'DEFAULT_PERMISSION_CLASSES': (

'rest_framework.permissions.IsAuthenticated',
)

}

3. Run the following command:

$ python manage.py migrate

1.3.5

To enhance security, Modoboa now checks the strength of user passwords <https://github.com/dstufft/django-
passwords>_.

To use this feature, add the following configuration into the settings.py file:

django-passwords

PASSWORD_MIN_LENGTH = 8

PASSWORD_COMPLEXITY = {
"UPPER": 1,
"LOWER": 1,
"DIGITS": 1

}

1.3.2

Modoboa now uses the atomic requests mode to preserve database consistency (reference).

To enable it, update the DATABASES variable in settings.py as follows:

DATABASES = {
"default": {

stuff before...
"ATOMIC_REQUESTS": True

},

2.2. Upgrade 29

https://docs.djangoproject.com/en/1.7/topics/db/transactions/#tying-transactions-to-http-requests

Modoboa Documentation, Release 1.8.1

"amavis": {
stuff before...
"ATOMIC_REQUESTS": True

}
}

1.3.0

This release does not bring awesome new features but it is a necessary bridge to the future of Modoboa. All extensions
now have their own git repository and the deploy process has been updated to reflect this change.

Another important update is the use of Django 1.7. Besides its new features, the migration system has been reworked
and is now more robust than before.

Before we begin with the procedure, here is a table showing old extension names and their new name:

Old name New package name New module name
modoboa.extensions.admin modoboa-admin modoboa_admin
modoboa.extensions.limits modoboa-admin-limits modoboa_admin_limits
modoboa.extensions.postfix_autoreply modoboa-postfix-autoreply modoboa_postfix_autoreply
modoboa.extensions.postfix_relay_domains modoboa-admin-relaydomains modoboa_admin_relaydomains
modoboa.extensions.radicale modoboa-radicale modoboa_radicale
modoboa.extensions.sievefilters modoboa-sievefilters modoboa_sievefilters
modoboa.extensions.stats modoboa-stats modoboa_stats
modoboa.extensions.webmail modoboa-webmail modoboa_webmail

Here are the required steps:

1. Install the extensions using pip (look at the second column in the table above):

$ pip install <the extensions you want>

2. Remove south from INSTALLED_APPS

3. Rename old extension names inside MODOBOA_APPS (look at the third column in the table above)

4. Remove modoboa.lib.middleware.ExtControlMiddleware from MIDDLEWARE_CLASSES

5. Change DATABASE_ROUTERS to:

DATABASE_ROUTERS = ["modoboa_amavis.dbrouter.AmavisRouter"]

6. Run the following commands:

$ cd <modoboa_instance_dir>
$ python manage.py migrate

7. Reply yes to the question

8. Run the following commands:

$ python manage.py load_initial_data
$ python manage.py collectstatic

9. The cleanup job has been renamed in Django, so you have to modify your crontab entry:

- 0 0 * * * <modoboa_site>/manage.py cleanup
+ 0 0 * * * <modoboa_site>/manage.py clearsessions

30 Chapter 2. Table of contents

Modoboa Documentation, Release 1.8.1

1.2.0

A new notification service let administrators know about new Modoboa versions. To activate it, you need to update
the TEMPLATE_CONTEXT_PROCESSORS variable like this:

from django.conf import global_settings

TEMPLATE_CONTEXT_PROCESSORS = global_settings.TEMPLATE_CONTEXT_PROCESSORS + (
'modoboa.core.context_processors.top_notifications',

)

and to define the new MODOBOA_API_URL variable:

MODOBOA_API_URL = 'http://api.modoboa.org/1/'

The location of external static files has changed. To use them, add a new path to the STATICFILES_DIRS:

Additional locations of static files
STATICFILES_DIRS = (

Put strings here, like "/home/html/static" or "C:/www/django/static".
Always use forward slashes, even on Windows.
Don't forget to use absolute paths, not relative paths.
"<path/to/modoboa/install/dir>/bower_components",

)

Run the following commands to define the hostname of your instance:

$ cd <modoboa_instance_dir>
$ python manage.py set_default_site <hostname>

If you plan to use the Radicale extension:

1. Add 'modoboa.extensions.radicale' to the MODOBOA_APPS variable

2. Run the following commands:

$ cd <modoboa_instance_dir>
$ python manage.py syncdb

Warning: You also have to note that the sitestatic directory has moved from <path to your site's
dir> to <modoboa's root url> (it’s probably the parent directory). You have to adapt your web server
configuration to reflect this change.

Configuration

Online parameters

Modoboa provides online panels to modify internal parameters. There are two available levels:

• Application level: global parameters, define how the application behaves. Available at Modoboa > Parameters

• User level: per user customization. Available at User > Settings > Preferences

Regardless level, parameters are displayed using tabs, each tab corresponding to one application.

2.3. Configuration 31

Modoboa Documentation, Release 1.8.1

General parameters

The admin application exposes several parameters, they are presented below:

Name Tab Description Default
value

Authentication type Gen-
eral

The backend used for authentication Local

Default password
scheme

Gen-
eral

Scheme used to crypt mailbox passwords crypt

Rounds Gen-
eral

Number of rounds (only used by sha256crypt and sha512crypt).
Must be between 1000 and 999999999, inclusive.

70000

Secret key Gen-
eral

A key used to encrypt users’ password in sessions random
value

Sender address Gen-
eral

Email address used to send notifications.

Enable
communication

Gen-
eral

Enable communication with Modoboa public API yes

Check new versions Gen-
eral

Automatically checks if a newer version is available yes

Send statistics Gen-
eral

Send statistics to Modoboa public API (counters and used extensions) yes

Top notifications
check interval

Gen-
eral

Interval between two top notification checks (in seconds) 30

Maximum log record
age

Gen-
eral

The maximum age in days of a log record 365

Items per page Gen-
eral

Number of displayed items per page 30

Default top
redirection

Gen-
eral

The default redirection used when no application is specified user-
prefs

Enable MX checks Ad-
min

Check that every domain has a valid MX record yes

Valid MXs Ad-
min

A list of IP or network address every MX should match. A warning
will be sent if a record does not respect this it.

Enable DNSBL
checks

Ad-
min

Check every domain against major DNSBL providers yes

Handle mailboxes on
filesystem

Ad-
min

Rename or remove mailboxes on the filesystem when they get
renamed or removed within Modoboa

no

Mailboxes owner Ad-
min

The UNIX account who owns mailboxes on the filesystem vmail

Default domain quota Ad-
min

Default quota (in MB) applied to freshly created domains with no
value specified. A value of 0 means no quota.

0

Automatic account
removal

Ad-
min

When a mailbox is removed, also remove the associated account no

Automatic
domain/mailbox
creation

Ad-
min

Create a domain and a mailbox when an account is automatically
created

yes

Note: If you are not familiar with virtual domain hosting, you should take a look at postfix’s documentation. This
How to also contains useful information.

Note: A random secret key will be generated each time the Parameters page is refreshed and until you save parameters

32 Chapter 2. Table of contents

http://www.postfix.org/VIRTUAL_README.html
https://help.ubuntu.com/community/PostfixVirtualMailBoxClamSmtpHowto

Modoboa Documentation, Release 1.8.1

at least once.

Note: Specific LDAP parameters are also available, see LDAP authentication.

Media files

Modoboa uses a specific directory to upload files (ie. when the webmail is in use) or to create ones (ex: graphical statis-
tics). This directory is named media and is located inside modoboa’s installation directory (called modoboa_site
in this documentation).

To work properly, the system user which runs modoboa (www-data, apache, whatever) must have write access to
this directory.

Customization

Custom logo

You have the possibility to use a custom logo instead of the default one on the login page.

To do so, open the settings.py file and add a MODOBOA_CUSTOM_LOGO variable. This variable must contain
the relative URL of your logo under MEDIA_URL. For example:

MODOBOA_CUSTOM_LOGO = os.path.join(MEDIA_URL, "custom_logo.png")

Then copy your logo file into the directory indicated by MEDIA_ROOT.

Host configuration

Note: This section is only relevant when Modoboa handles mailboxes renaming and removal from the filesystem.

To manipulate mailboxes on the filesystem, you must allow the user who runs Modoboa to execute commands as the
user who owns mailboxes.

To do so, edit the /etc/sudoers file and add the following inside:

<user_that_runs_modoboa> ALL=(<mailboxes owner>) NOPASSWD: ALL

Replace values between <> by the ones you use.

Time zone and language

Modoboa is available in many languages.

To specify the default language to use, edit the settings.py file and modify the LANGUAGE_CODE variable:

LANGUAGE_CODE = 'fr' # or 'en' for english, etc.

2.3. Configuration 33

Modoboa Documentation, Release 1.8.1

Note: Each user has the possibility to define the language he prefers.

In the same configuration file, specify the timezone to use by modifying the TIME_ZONE variable. For example:

TIME_ZONE = 'Europe/Paris'

Sessions management

Modoboa uses Django’s session framework to store per-user information.

Few parameters need to be set in the settings.py configuration file to make Modoboa behave as expected:

SESSION_EXPIRE_AT_BROWSER_CLOSE = False # Default value

This parameter is optional but you must ensure it is set to False (the default value).

The default configuration file provided by the modoboa-admin.py command is properly configured.

External authentication

LDAP

Modoboa supports external LDAP authentication using the following extra components:

• Python LDAP client

• Django LDAP authentication backend

If you want to use this feature, you must first install those components:

$ pip install python-ldap django-auth-ldap

Then, all you have to do is to modify the settings.py file. Add a new authentication backend to the AUTHENTI-
CATION_BACKENDS variable, like this:

AUTHENTICATION_BACKENDS = (
'modoboa.lib.authbackends.LDAPBackend',
'django.contrib.auth.backends.ModelBackend',

)

Finally, go to Modoboa > Parameters > General and set Authentication type to LDAP.

From there, new parameters will appear to let you configure the way Modoboa should connect to your LDAP server.
They are described just below:

34 Chapter 2. Table of contents

https://docs.djangoproject.com/en/dev/topics/http/sessions/?from=olddocs
http://www.python-ldap.org/
http://pypi.python.org/pypi/django-auth-ldap

Modoboa Documentation, Release 1.8.1

Name Description Default
value

Server address The IP address of the DNS name of the LDAP server local-
host

Server port The TCP port number used by the LDAP server 389
Use a secure
connection

Use an SSL/TLS connection to access the LDAP server no

Authentication
method

Choose the authentication method to use Direct
bind

User DN template
(direct bind
mode)

The template used to construct a user’s DN. It should contain one placeholder (ie.
%(user)s)

Bind BN The distinguished name to use when binding to the LDAP server. Leave empty
for an anonymous bind

Bind password The password to use when binding to the LDAP server (with ‘Bind DN’)
Search base The distinguished name of the search base
Search filter An optional filter string (e.g. ‘(objectClass=person)’). In order to be valid, it must

be enclosed in parentheses.
(mail=%(user)s)

Password
attribute

The attribute used to store user passwords user-
Pass-
word

Active Directory Tell if the LDAP server is an Active Directory one no
Administrator
groups

Members of those LDAP Posix groups will be created ad domain administrators.
Use ‘;’ characters to separate groups.

Group type The type of group used by your LDAP directory. Posix-
Group

Groups search
base

The distinguished name of the search base used to find groups

Domain/mailbox
creation

Automatically create a domain and a mailbox when a new user is created just
after the first successful authentication. You will generally want to disable this
feature when the relay domains extension is in use

yes

If you need additional parameters, you will find a detailled documentation here.

Once the authentication is properly configured, the users defined in your LDAP directory will be able to connect to
Modoboa, the associated domain and mailboxes will be automatically created if needed.

The first time a user connects to Modoboa, a local account is created if the LDAP username is a valid email address.
By default, this account belongs to the SimpleUsers group and it has a mailbox.

To automatically create domain administrators, you can use the Administrator groups setting. If a LDAP user belongs
to one the listed groups, its local account will belong to the DomainAdmins group. In this case, the username is not
necessarily an email address.

Users will also be able to update their LDAP password directly from Modoboa.

Note: Modoboa doesn’t provide any synchronization mechanism once a user is registered into the database. Any
modification done from the directory to a user account will not be reported to Modoboa (an email address change for
example). Currently, the only solution is to manually delete the Modoboa record, it will be recreated on the next user
login.

2.3. Configuration 35

http://packages.python.org/django-auth-ldap/

Modoboa Documentation, Release 1.8.1

SMTP

It is possible to use an existing SMTP server as an authentication source. To enable this feature, edit the settings.
py file and change the following setting:

AUTHENTICATION_BACKENDS = (
'modoboa.lib.authbackends.SMTPBackend',
'django.contrib.auth.backends.ModelBackend',

)

SMTP server location can be customized using the following settings:

AUTH_SMTP_SERVER_ADDRESS = 'localhost'
AUTH_SMTP_SERVER_PORT = 25
AUTH_SMTP_SECURED_MODE = None # 'ssl' or 'starttls' are accepted

Database maintenance

Cleaning the logs table

Modoboa logs administrator specific actions into the database. A clean-up script is provided to automatically remove
oldest records. The maximum log record age can be configured through the online panel.

To use it, you can setup a cron job to run every night:

0 0 * * * <modoboa_site>/manage.py cleanlogs
#
Or like this if you use a virtual environment:
0 0 * * * <virtualenv path/bin/python> <modoboa_site>/manage.py cleanlogs

Cleaning the session table

Django does not provide automatic purging. Therefore, it’s your job to purge expired sessions on a regular basis.

Django provides a sample clean-up script: django-admin.py clearsessions. That script deletes any session
in the session table whose expire_date is in the past.

For example, you could setup a cron job to run this script every night:

0 0 * * * <modoboa_site>/manage.py clearsessions
#
Or like this if you use a virtual environment:
0 0 * * * <virtualenv path/bin/python> <modoboa_site>/manage.py clearsessions

Moving to Modoboa

You have an existing platform and you’d like to move to Modoboa, the following tools could help you.

From postfixadmin

A dedicated command allows you to convert an existing postfixadmin database to a Modoboa one. Consult the docu-
mentation to know more about the process.

36 Chapter 2. Table of contents

http://postfixadmin.sourceforge.net/
https://github.com/modoboa/modoboa-pfxadmin-migrate
https://github.com/modoboa/modoboa-pfxadmin-migrate

Modoboa Documentation, Release 1.8.1

Using CSV files

Modoboa allows you to import any object (domain, domain alias, mailbox and alias) using a simple CSV file encoded
using UTF8. Each line corresponds to a single object and must respect one of the following format:

domain; <name: string>; <quota: integer>; <default mailbox quota: integer>; <enabled:
→˓boolean>
domainalias; <name: string>; <targeted domain: string>; <enabled: boolean>
relaydomain; <name: string>; <target host: string>; <target port: integer>; <service:
→˓string>; <enabled: boolean>; <verify recipients: boolean>
account; <loginname: string>; <password: string>; <first name: string>; <last name:
→˓string>; <enabled: boolean>; <group: string>; <address: string>; <quota: integer>; [
→˓<domain: string>, ...]
alias; <address: string>; <enabled: boolean>; <recipient: string>; ...

Boolean fields accept the following values: true, 1, yes, y (case insensitive). Any other value will be evaluated as
false.

Warning: The order does matter. Objects are created sequencially so a domain must be created before its
mailboxes and aliases and a mailbox must created before its alias(es).

To actually import such a file:

> sudo -u <modoboa_user> -i
> source <virtualenv_path>/bin/activate
> cd <modoboa_instance_dir>
> python manage.py modo import <your file>

Available options can be listed using the following command:

> python manage.py modo import -h

REST API

To ease the integration with external sources (software or other), Modoboa provides a REST API.

Every installed instance comes with a ready-to-use API and a documentation. You will find them using the following
url patterns:

• API: http://<hostname>/api/v1/

• Documentation: http://<hostname>/docs/api/

An example of this documentation is available on the official demo.

Using this API requires an authentication and for now, only a token based authentication is supported. To get a valid
token, log-in to your instance with a super administrator, go to Settings > API and activate the API access. Press the
Update button and wait until the page is reloaded, the token will be displayed.

2.5. REST API 37

https://demo.modoboa.org/docs/api/

Modoboa Documentation, Release 1.8.1

To make valid API calls, every requests you send must embed this token within an Authorization HTTP header like
this:

Authorization: Token <YOUR_TOKEN>

and the content type of those requests must be application/json.

How to contribute

Contributions are always welcome. If you want to submit a patch, please respect the following rules:

• Open a pull request on the appropriate repository

• Respect PEP8

• Document your patch and respect PEP 257

• Add unit tests and make sure the global coverage does not decrease

If all those steps are validated, your contribution will generally be integrated.

Table of contents

Useful tips

You would like to work on Modoboa but you don’t know where to start? You’re at the right place! Browse this page
to learn useful tips.

Prepare a virtual environment

A virtual environment is a good way to setup a development environment on your machine.

Note: virtualenv is available on all major distributions, just install it using your favorite packages manager.

To do so, run the following commands:

38 Chapter 2. Table of contents

https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0257/
http://virtualenv.readthedocs.org/en/latest/

Modoboa Documentation, Release 1.8.1

$ virtualenv <path>
$ source <path>/bin/activate
$ git clone https://github.com/modoboa/modoboa.git
$ cd modoboa
$ python setup.py develop
$ pip install -r dev-requirements.txt

The develop command creates a symbolic link to your local copy so any modification you make will be automati-
cally available in your environment, no need to copy them.

Deploy an instance for development

Warning: Make sure to create a database before running this step. The format of the database url is also described
in this page.

Now that you have a running environment, you’re ready to deploy a test instance:

$ cd <path>
$ modoboa-admin.py deploy --dburl default:<database url> --hostname localhost --devel
→˓instance
$ python manage.py runserver

You’re ready to go! You should be able to access Modoboa at http://localhost:8000 using
admin:password as credentials.

Manage static files

Modoboa uses bower (thanks to django-bower) to manage its CSS and javascript dependencies.

Those dependencies are listed in a file called dev_settings.py located inside the <path_to_local_copy>/
modoboa/core directory.

If you want to add a new dependency, just complete the BOWER_INSTALLED_APPS parameter and run the following
command:

$ python manage.py bower install

It will download and store the required files into the <path_to_local_copy>/modoboa/
bower_components directory.

Test your modifications

If you deployed a specific instance for your development needs, you can run the tests suite as follows:

> python manage.py test modoboa.core modoboa.lib modoboa.admin modoboa.limits modoboa.
→˓relaydomains

Otherwise, you can run the tests suite from the repository using tox.

2.6. How to contribute 39

http://bower.io/
https://github.com/nvbn/django-bower
https://tox.readthedocs.io

Modoboa Documentation, Release 1.8.1

Start a basic Modoboa instance

From the repository, run the following command to launch a simple instance with a few fixtures:

> tox -e serve

You can use admin/password to log in.

Build the documentation

If you need to modify the documenation and want to see the result, you can build it as follows:

> tox -e doc
> firefox .tox/doc/tmp/html/index.html

FAQ

bower command is missing in manage.py

bower command is missing in manage.py if you don’t use the --devel option of the modoboa-admin.py
deploy command.

To fix it, regenerate your instance or update your settings.py file manually. Look at devmode in https://github.
com/tonioo/modoboa/blob/master/modoboa/core/commands/templates/settings.py.tpl

Create a new plugin

Introduction

Modoboa offers a plugin API to expand its capabilities. The current implementation provides the following possibili-
ties:

• Expand navigation by adding entry points to your plugin inside the GUI

• Access and modify administrative objects (domains, mailboxes, etc.)

• Register callback actions for specific events

Plugins are nothing more than Django applications with an extra piece of code that integrates them into Modoboa. The
modo_extension.py file will contain a complete description of the plugin:

• Admin and user parameters

• Custom menu entries

The communication between both applications is provided by Django signals.

The following subsections describe the plugin architecture and explain how you can create your own.

The required glue

To create a new plugin, just start a new django application like this (into Modoboa’s directory):

40 Chapter 2. Table of contents

https://github.com/tonioo/modoboa/blob/master/modoboa/core/commands/templates/settings.py.tpl
https://github.com/tonioo/modoboa/blob/master/modoboa/core/commands/templates/settings.py.tpl
https://docs.djangoproject.com/en/1.9/topics/signals/

Modoboa Documentation, Release 1.8.1

$ python manage.py startapp

Then, you need to register this application using the provided API. Just copy/paste the following example into the
modo_extension.py file of the future extension:

from modoboa.core.extensions import ModoExtension, exts_pool

class MyExtension(ModoExtension):
"""My custom Modoboa extension."""

name = "myext"
label = "My Extension"
version = "0.1"
description = "A description"
url = "myext_root_location" # optional, name is used if not defined

def load(self):
"""This method is called when Modoboa loads available and activated plugins.

Declare parameters and register events here.
"""
pass

def load_initial_data(self):
"""Optional: provide initial data for your extension here."""
pass

exts_pool.register_extension(MyExtension)

Once done, simply add your extension’s module name to the MODOBOA_APPS variable located inside settings.
py. Finally, run the following commands:

$ python manage.py migrate
$ python manage.py load_initial_data
$ python manage.py collectstatic

Parameters

A plugin can declare its own parameters. There are two levels available:

• ‘Global’ parameters : used to configure the plugin, editable inside the Admin > Settings > Parameters page

• ‘User’ parameters : per-user parameters (or preferences), editable inside the Options > Preferences page

Playing with parameters

Parameters are defined using Django forms and Modoboa adds two special forms you can inherit depending on the
level of parameter(s) you want to add:

• modoboa.parameters.forms.AdminParametersForm: for general parameters

• modoboa.parameters.forms.UserParametersForm: for user parameters

To register new parameters, add the following line into the load method of your plugin class:

2.6. How to contribute 41

https://docs.djangoproject.com/en/1.9/topics/forms/

Modoboa Documentation, Release 1.8.1

from modoboa.parameters import tools as param_tools
param_tools.registry.add(

LEVEL, YourForm, ugettext_lazy("Title"))

Replace LEVEL by "global" or "user".

Custom role permissions

Modoboa uses Django’s internal permission system. Administrative roles are nothing more than groups (Group
instances).

An extension can add new permissions to a group by listening to the extra_role_permissions signal. Here is
an example:

from django.dispatch import receiver
from modoboa.core import signals as core_signals

PERMISSIONS = {
"Resellers": [

("relaydomains", "relaydomain", "add_relaydomain"),
("relaydomains", "relaydomain", "change_relaydomain"),
("relaydomains", "relaydomain", "delete_relaydomain"),
("relaydomains", "service", "add_service"),
("relaydomains", "service", "change_service"),
("relaydomains", "service", "delete_service")

]
}

@receiver(core_signals.extra_role_permissions)
def extra_role_permissions(sender, role, **kwargs):

"""Add permissions to the Resellers group."""
return constants.PERMISSIONS.get(role, [])

Extending admin forms

The forms used to edit objects (account, domain, etc.) through the admin panel are composed of tabs. You can extend
them (ie. add new tabs) in a pretty easy way thanks to custom signals.

Account

To add a new tab to the account edition form, define new listeners (handlers) for the following signals:

• modoboa.admin.signals.extra_account_forms

• modoboa.admin.signals.get_account_form_instances

• modoboa.admin.signals.check_extra_account_form (optional)

Example:

from django.dispatch import receiver
from modoboa.admin import signals as admin_signals

@receiver(admin_signals.extra_account_forms)

42 Chapter 2. Table of contents

Modoboa Documentation, Release 1.8.1

def extra_account_form(sender, user, account, **kwargs):
return [

{"id": "tabid", "title": "Title", "cls": MyFormClass}
]

@receiver(admin_signals.get_account_form_instances)
def fill_my_tab(sender, user, account, **kwargs):

return {"id": my_instance}

Domain

To add a new tab to the domain edition form, define new listeners (handlers) for the following signals:

• modoboa.admin.signals.extra_domain_forms

• modoboa.admin.signals.get_domain_form_instances

Example:

from django.dispatch import receiver
from modoboa.admin import signals as admin_signals

@receiver(admin_signals.extra_domain_forms)
def extra_account_form(sender, user, domain, **kwargs):

return [
{"id": "tabid", "title": "Title", "cls": MyFormClass}

]

@receiver(admin_signals.get_domain_form_instances)
def fill_my_tab(sender, user, domain, **kwargs):

return {"id": my_instance}

Contributors

• Antidot

• Bearstech

• Dalnix

2.7. Contributors 43

http://antidot.com
http://bearstech.com
https://www.dalnix.se/

	Overview
	Table of contents

