

Modoboa documentation

[image: _images/modoboa_logo.png]

Overview

Modoboa is a mail hosting and management platform including a modern
and simplified Web User Interface designed to work with Postfix [http://www.postfix.org] and Dovecot [http://www.dovecot.org].

It is extensible by nature and comes with a lot of additional extensions:

	Name

	Description

	Documentation

	modoboa-amavis [https://github.com/modoboa/modoboa-amavis]

	A frontend for Amavis [http://www.amavis.org]

	https://modoboa-amavis.readthedocs.io

	modoboa-dmarc [https://github.com/modoboa/modoboa-dmarc]

	A set of tools to use
DMARC [https://dmarc.org]

	https://github.com/modoboa/modoboa-dmarc

	modoboa-imap-migration [https://github.com/modoboa/modoboa-imap-migration]

	Migrate mailboxes from an
existing server using
IMAP (and offlineimap)

	https://github.com/modoboa/modoboa-imap-migration

	modoboa-pdfcredentials [https://github.com/modoboa/modoboa-pdfcredentials]

	Generate PDF documents
containing account
credentials

	https://github.com/modoboa/modoboa-pdfcredentials

	modoboa-pfxadmin-migrate [https://github.com/modoboa/modoboa-pfxadmin-migrate]

	A tool to migrate from
Postfixadmin

	https://github.com/modoboa/modoboa-pfxadmin-migrate

	modoboa-postfix-autoreply [https://github.com/modoboa/modoboa-postfix-autoreply]

	Away message editor
(postfix compatible)

	https://modoboa-postfix-autoreply.readthedocs.io

	modoboa-radicale [https://github.com/modoboa/modoboa-radicale]

	A frontend for Radicale [http://radicale.org]

	https://modoboa-radicale.readthedocs.io

	modoboa-sievefilters [https://github.com/modoboa/modoboa-sievefilters]

	A Sieve filters (rules)
editor

	https://modoboa-sievefilters.readthedocs.io

	modoboa-stats [https://github.com/modoboa/modoboa-stats]

	Graphical statistics
(message traffic and
more)

	https://modoboa-stats.readthedocs.io

	modoboa-webmail [https://github.com/modoboa/modoboa-webmail]

	A simple webmail

	https://modoboa-webmail.readthedocs.io

Table of contents

	Installation

	Upgrade

	Configuration

	Moving to Modoboa

	REST API

	How to contribute

	Contributors

Installation

Requirements

You will need a Server to perform well with at least:

	CPU: 2

	RAM: 2GB

	Disk: 10GB

Recommended way

If you start from scratch and want to deploy a complete mail server,
you will love the modoboa installer [https://github.com/modoboa/modoboa-installer]! It is the easiest
and the quickest way to setup a fully functional server (modoboa,
postfix, dovecot, amavis and more) on one machine.

Warning

For now, only Debian and CentOS based Linux distributions are
supported. We do our best to improve compatibility but if you use
another Linux or a UNIX system, you will have to install Modoboa
manually.

To use it, just run the following commands in your terminal:

> git clone https://github.com/modoboa/modoboa-installer
> cd modoboa-installer
> sudo ./run.py <your domain>

if you get this warning - ‘/usr/bin/env: ‘python’: No such file or directory’, do make sure sure python is installed on your server. Sometimes python is installed but the installer can’t detect it or which python version to run, especially on a debian based system. Then run this command first.

> sudo apt-get install python-virtualenv python-pip

Wait a few minutes and you’re done o/

Manual installation

For those who need a manual installation or who just want to setup a
specific part, here are the steps you must follow:

	Modoboa

	Web server

	Dovecot

	Postfix

	OpenDKIM

Extensions

Only few commands are needed to add a new extension to your setup.

In case you use a dedicated user and/or a virtualenv, do not forget to
use them:

> sudo -u <modoboa_user> -i
> source <virtuenv_path>/bin/activate

Then, run the following commands:

> pip install <EXTENSION>==<VERSION>
> cd <modoboa_instance_dir>
> python manage.py migrate
> python manage.py collectstatic
> python manage.py check --deploy

Then, restart your web server.

Modoboa

This section describes the installation of the web interface (a
Django [https://www.djangoproject.com/] project).

Prepare the system

First of all, we recommand the following context:

	Use a dedicated system user

	Use a virtualenv [http://www.virtualenv.org/en/latest/] to
install the application because it will isolate it (and its
dependencies) from the rest of your system

The following example illustrates how to realize this (Debian like system):

> sudo apt-get install python-virtualenv python-pip
> sudo useradd modoboa
> sudo -i modoboa
> virtualenv env
> source env/bin/activate
(env)> pip install -U pip

Modoboa depends on external tools and some of them require compilation
so you need a compiler and a few C libraries. Make sure to install the
following system packages according to your distribution:

	Debian / Ubuntu

	build-essential python-dev
libxml2-dev libxslt-dev
libjpeg-dev librrd-dev
rrdtool libffi-dev

	CentOS

	gcc gcc-c++ python-devel
libxml2-devel libxslt-devel
libjpeg-turbo-devel
rrdtool-devel rrdtool
libffi-devel

Then, install Modoboa:

(env)> pip install modoboa

Database

Warning

This documentation does not cover the installation of a database
server but only the setup of a functional database that Modoboa
will use.

Thanks to Django, Modoboa is compatible with the following databases:

	PostgreSQL

	MySQL / MariaDB

	SQLite

Since the last one does not require particular actions, only the first
two ones are described.

PostgreSQL

Install the corresponding Python binding:

(env)> pip install psycopg2

Then, create a user and a database:

> sudo -i postgres
>

MySQL / MariaDB

Install the corresponding Python binding:

(env)> pip install mysqlclient

Note

MariaDB 10.2 (and newer) require mysqlclient 1.3.11 (or newer).

Then, create a user and a database:

> mysqladmin -u root -p create modoboa

Deploy an instance

modoboa-admin.py, a command line tool, lets you deploy a
ready-to-use Modoboa site using only one instruction:

(env)> modoboa-admin.py deploy instance --collectstatic \
 --domain <hostname of your server> --dburl default:database-url

Note

You can install additional extensions during the deploy process. To
do so, use the --extensions option which accepts a list of
names as argument (--extensions ext1 ext2 ...). If you want to
install all extensions, just use the all keyword like this
--extensions all.

If you choose to install extensions one at a time, you will have to
add their names in settings.py to MODOBOA_APPS. Also ensure that
you have the line from modoboa_amavis.settings import * at the
end of this file.

The list of available extensions can be found on the index
page. Instructions to install them are available on
each extensions page.

Note

You can specify more than one database connection using the
--dburl option. Multiple connections are differentiated by a
prefix.

The primary connection must use the default: prefix (as shown
in the example above). For the amavis [http://modoboa-amavis.readthedocs.org] extension, use the
amavis: prefix. For example: --dburl
default:<database url> amavis:<database url>.

A database url should meet the following syntax
<mysql|postgres>://[user:pass@][host:port]/dbname OR
sqlite:////full/path/to/your/database/file.sqlite.

The command will ask you a few questions, answer them and you’re
done.

If you need a silent installation (e.g. if you’re using
Salt-Stack, Ansible or whatever), it’s possible to supply the database
credentials as commandline arguments.

You can consult the complete option list by running the following
command:

$ modoboa-admin.py help deploy

Cron jobs

A few recurring jobs must be configured to make Modoboa works as
expected.

Create a new file, for example /etc/cron.d/modoboa and put the
following content inside:

#
Modoboa specific cron jobs
#
PYTHON=<PATH TO PYTHON BINARY>
INSTANCE=<PATH TO MODOBOA INSTANCE>

Operations on mailboxes
* * * * * vmail $PYTHON $INSTANCE/manage.py handle_mailbox_operations

Sessions table cleanup
0 0 * * * root $PYTHON $INSTANCE/manage.py clearsessions

Logs table cleanup
0 0 * * * root $PYTHON $INSTANCE/manage.py cleanlogs

Logs parsing
*/5 * * * * root $PYTHON $INSTANCE/manage.py logparser &> /dev/null
0 * * * * root $PYTHON $INSTANCE/manage.py update_statistics

DNSBL checks
*/30 * * * * root $PYTHON $INSTANCE/manage.py modo check_mx

Public API communication
0 * * * * root $PYTHON $INSTANCE/manage.py communicate_with_public_api

Generate DKIM keys (they will belong to the user running this job)
* * * * * root umask 077 && $PYTHON $INSTANCE/manage.py modo manage_dkim_keys

Now you can continue to the Web server section.

Web server

Note

The following instructions are meant to help you get your site up
and running quickly. However it is not possible for the people
contributing documentation to Modoboa to test every single
combination of web server, wsgi server, distribution, etc. So it is
possible that your installation of uwsgi or nginx or Apache or
what-have-you works differently. Keep this in mind.

Apache2

First, make sure that mod_wsgi is installed on your server.

Create a new virtualhost in your Apache configuration and put the
following content inside:

<VirtualHost *:80>
 ServerName <your value>
 DocumentRoot <modoboa_instance_path>

 Alias /media/ <modoboa_instance_path>/media/
 <Directory <modoboa_instance_path>/media>
 Order deny,allow
 Allow from all
 </Directory>

 Alias /sitestatic/ <modoboa_instance_path>/sitestatic/
 <Directory <modoboa_instance_path>/sitestatic>
 Order deny,allow
 Allow from all
 </Directory>

 WSGIScriptAlias / <modoboa_instance_path>/<instance_name>/wsgi.py

 # Pass Authorization header to enable API usage:
 WSGIPassAuthorization On
</VirtualHost>

This is just one possible configuration.

To use mod_wsgi daemon mode, add the two following directives just
under WSGIScriptAlias:

WSGIDaemonProcess example.com python-path=<modoboa_instance>:<virtualenv path>/lib/python2.7/site-packages
WSGIProcessGroup example.com

Replace values between <> with yours. If you don’t use a
virtualenv [http://virtualenv.readthedocs.org/en/latest/], just
remove the last part of the WSGIDaemonProcess directive.

Note

You will certainly need more configuration in order to launch
Apache.

Now, you can go the Dovecot section to continue the installation.

Nginx

This section covers two different ways of running Modoboa behind
Nginx [http://nginx.org/] using a WSGI application server. Choose
the one you prefer between Green Unicorn [http://gunicorn.org/] or
uWSGI [https://github.com/unbit/uwsgi].

In both cases, you’ll need to download and install nginx [http://wiki.nginx.org/Install].

Green Unicorn

Firstly, Download and install gunicorn [http://gunicorn.org/install.html]. Then, use the following sample
gunicorn configuration (create a new file named
gunicorn.conf.py inside Modoboa’s root dir):

backlog = 2048
bind = "unix:/var/run/gunicorn/modoboa.sock"
pidfile = "/var/run/gunicorn/modoboa.pid"
daemon = True
debug = False
workers = 2
logfile = "/var/log/gunicorn/modoboa.log"
loglevel = "info"

To start gunicorn, execute the following commands:

$ cd <modoboa dir>
$ gunicorn -c gunicorn.conf.py <modoboa dir>.wsgi:application

Now the nginx part. Just create a new virtual host and use the
following configuration:

upstream modoboa {
 server unix:/var/run/gunicorn/modoboa.sock fail_timeout=0;
}

server {
 listen 443 ssl;
 ssl on;
 keepalive_timeout 70;

 server_name <host fqdn>;
 root <modoboa_instance_path>;

 access_log /var/log/nginx/<host fqdn>.access.log;
 error_log /var/log/nginx/<host fqdn>.error.log;

 ssl_certificate <ssl certificate for your site>;
 ssl_certificate_key <ssl certificate key for your site>;

 location /sitestatic/ {
 autoindex on;
 }

 location /media/ {
 autoindex on;
 }

 location / {
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header Host $http_host;
 proxy_redirect off;
 proxy_set_header X-Forwarded-Protocol ssl;
 proxy_pass http://modoboa;
 }
}

If you do not plan to use SSL then change the listen directive to
listen 80; and delete each of the following directives:

ssl on;
keepalive_timeout 70;
ssl_certificate <ssl certificate for your site>;
ssl_certificate_key <ssl certificate key for your site>;
proxy_set_header X-Forwarded-Protocol ssl;

If you do plan to use SSL, you’ll have to generate a certificate and a
key. This article [http://wiki.nginx.org/HttpSslModule#Generate_Certificates]
contains information about how to do it.

Paste this content to your configuration (replace values between
<> with yours) and restart nginx.

Now, you can go the Dovecot section to continue the installation.

uWSGI

The following setup is meant to get you started quickly. You should
read the documentation of both nginx and uwsgi to understand how to
optimize their configuration for your site.

The Django documentation includes the following warning regarding
uwsgi:

Warning

Use uwsgi 1.2.6 or newer. If you do not, you will run into
problems. Modoboa will fail in obscure ways.

To use this setup, first download and install uwsgi [http://uwsgi-docs.readthedocs.org/en/latest/WSGIquickstart.html].

Here is a sample nginx configuration:

server {
 listen 443 ssl;
 ssl on;
 keepalive_timeout 70;

 server_name <host fqdn>;
 root <modoboa's settings dir>;

 ssl_certificate <ssl certificate for your site>;
 ssl_certificate_key <ssl certificate key for your site>;

 access_log /var/log/nginx/<host fqdn>.access.log;
 error_log /var/log/nginx/<host fqdn>.error.log;

 location <modoboa's root url>/sitestatic/ {
 autoindex on;
 alias <location of sitestatic on your file system>;
 }

 # Whether or not Modoboa uses a media directory depends on how
 # you configured Modoboa. It does not hurt to have this.
 location <modoboa's root url>/media/ {
 autoindex on;
 alias <location of media on your file system>;
 }

 # This denies access to any file that begins with
 # ".ht". Apache's .htaccess and .htpasswd are such files. A
 # Modoboa installed from scratch would not contain any such
 # files, but you never know what the future holds.
 location ~ /\.ht {
 deny all;
 }

 location <modoba's root url>/ {
 include uwsgi_params;
 uwsgi_pass <uwsgi port>;
 uwsgi_param UWSGI_SCRIPT <modoboa instance name>.wsgi:application;
 uwsgi_param UWSGI_SCHEME https;
 }
}

<modoboa instance name> must be replaced by the value you used
when you deployed your instance.

If you do not plan to use SSL then change the listen directive to
listen 80; and delete each of the following directives:

ssl on;
keepalive_timeout 70;
ssl_certificate <ssl certificate for your site>;
ssl_certificate_key <ssl certificate key for your site>;
uwsgi_param UWSGI_SCHEME https;

If you do plan to use SSL, you’ll have to generate a certificate and a
key. This article [http://wiki.nginx.org/HttpSslModule#Generate_Certificates]
contains information about how to do it.

Make sure to replace the <...> in the sample configuration with
appropriate values. Here are some explanations for the cases that may
not be completely self-explanatory:

	<modoboa's settings dir>

	Where Modoboa’s settings.py resides. This is also where the
sitestatic and media directories reside.

	<modoboa's root url>

	This is the URL which will be the root of your Modoboa site at your
domain. For instance, if your Modoboa installation is reachable at
at https://foo/modoboa then <modoboa's root url> is
/modoboa. In this case you probably also have to set the
alias directives to point to where Modoboa’s sitestatic and
media directories are because otherwise nginx won’t be able to find
them.

If Modoboa is at the root of your domain, then <modoboa root
url> is an empty string and can be deleted from the configuration
above. In this case, you probably do not need the alias
directives.

	<uwsgi port>

	The location where uwsig is listening. It could be a unix domain
socket or an address:port combination. Ubuntu configures uwsgi so
that the port is:

unix:/run/uwsgi/app/<app name>/socket

where <app name> is the name of the application.

Your uwsgi configuration should be:

[uwsgi]
Not needed when using uwsgi from pip
plugins = python
chdir = <modoboa's top dir>
module = <name>.wsgi:application
master = true
harakiri = 60
processes = 4
vhost = true
no-default-app = true

The plugins directive should be turned on if you use a uwsgi
installation that requires it. If uwsgi was installed from pip, it
does not require it. In the configuration above:

	<modoboa's top dir>

	The directory where manage.py resides. This directory is the
parent of <modoboa's settings dir>

	<name>

	The name that you passed to modoboa-admin.py deploy when you
created your Modoboa instance.

Now, you can go the Dovecot section to continue the installation.

Dovecot

Modoboa requires Dovecot 2+ to work so the following documentation is
suitable for this combination.

In this section, we assume dovecot’s configuration resides in
/etc/dovecot, all pathes will be relative to this directory.

Mailboxes

First, edit the conf.d/10-mail.conf and set the mail_location
variable:

maildir
mail_location = maildir:~/.maildir

Then, edit the inbox namespace and add the following lines:

inbox = yes

mailbox Drafts {
 auto = subscribe
 special_use = \Drafts
}
mailbox Junk {
 auto = subscribe
 special_use = \Junk
}
mailbox Sent {
 auto = subscribe
 special_use = \Sent
}
mailbox Trash {
 auto = subscribe
 special_use = \Trash
}

With dovecot 2.1+, it ensures all the special mailboxes will be
automaticaly created for new accounts.

For dovecot 2.0 and older, use the autocreate [http://wiki2.dovecot.org/Plugins/Autocreate] plugin.

Operations on the file system

Warning

Modoboa needs to access the dovecot binary to check its
version. To find the binary path, we use the which command
first and then try known locations (/usr/sbin/dovecot and
/usr/local/sbin/dovecot). If you installed dovecot in a
custom location, please tell us where the binary is by using the
DOVECOT_LOOKUP_PATH setting (see settings.py).

Three operation types are considered:

	Mailbox creation

	Mailbox renaming

	Mailbox deletion

The first one is managed by Dovecot. The last two ones may be managed
by Modoboa if it can access the file system where the mailboxes are
stored (see General parameters to activate this feature).

Those operations are treated asynchronously by a cron script. For
example, when you rename an e-mail address through the web UI, the
associated mailbox on the file system is not modified
directly. Instead of that, a rename order is created for this
mailbox. The mailbox will be considered unavailable until the order is
executed (see Postfix configuration).

Edit the crontab of the user who owns the mailboxes on the file system:

$ crontab -u <user> -e

And add the following line inside:

* * * * * python <modoboa_site>/manage.py handle_mailbox_operations

Warning

The cron script must be executed by the system user owning the mailboxes.

Warning

The user running the cron script must have access to the
settings.py file of the modoboa instance.

The result of each order is recorded into Modoboa’s log. Go to
Modoboa > Logs to consult them.

Authentication

To make the authentication work, edit the conf.d/10-auth.conf and
uncomment the following line at the end:

#!include auth-system.conf.ext
!include auth-sql.conf.ext
#!include auth-ldap.conf.ext
#!include auth-passwdfile.conf.ext
#!include auth-checkpassword.conf.ext
#!include auth-vpopmail.conf.ext
#!include auth-static.conf.ext

Then, edit the conf.d/auth-sql.conf.ext file and add the following
content inside:

passdb sql {
 driver = sql
 # Path for SQL configuration file, see example-config/dovecot-sql.conf.ext
 args = /etc/dovecot/dovecot-sql.conf.ext
}

userdb sql {
 driver = sql
 args = /etc/dovecot/dovecot-sql.conf.ext
}

Make sure to activate only one backend (per type) inside your configuration
(just comment the other ones).

Edit the dovecot-sql.conf.ext and modify the configuration according
to your database engine.

MySQL users

driver = mysql

connect = host=<mysqld socket> dbname=<database> user=<user> password=<password>

default_pass_scheme = CRYPT

password_query = SELECT email AS user, password FROM core_user WHERE email='%Lu' and is_active=1

 user_query = SELECT '<mailboxes storage directory>/%Ld/%Ln' AS home, <uid> as uid, <gid> as gid, concat('*:bytes=', mb.quota, 'M') AS quota_rule FROM admin_mailbox mb INNER JOIN admin_domain dom ON mb.domain_id=dom.id WHERE mb.address='%Ln' AND dom.name='%Ld'

iterate_query = SELECT email AS user FROM core_user

PostgreSQL users

driver = pgsql

connect = host=<postgres socket> dbname=<database> user=<user> password=<password>

default_pass_scheme = CRYPT

password_query = SELECT email AS user, password FROM core_user u INNER JOIN admin_mailbox mb ON u.id=mb.user_id INNER JOIN admin_domain dom ON mb.domain_id=dom.id WHERE u.email='%Lu' AND u.is_active AND dom.enabled

user_query = SELECT '<mailboxes storage directory>/%Ld/%Ln' AS home, <uid> as uid, <gid> as gid, '*:bytes=' || mb.quota || 'M' AS quota_rule FROM admin_mailbox mb INNER JOIN admin_domain dom ON mb.domain_id=dom.id WHERE mb.address='%Ln' AND dom.name='%Ld'

iterate_query = SELECT email AS user FROM core_user

SQLite users

driver = sqlite

connect = <path to the sqlite db file>

default_pass_scheme = CRYPT

password_query = SELECT email AS user, password FROM core_user u INNER JOIN admin_mailbox mb ON u.id=mb.user_id INNER JOIN admin_domain dom ON mb.domain_id=dom.id WHERE u.email='%Lu' AND u.is_active=1 AND dom.enabled=1

user_query = SELECT '<mailboxes storage directory>/%Ld/%Ln' AS home, <uid> as uid, <gid> as gid, ('*:bytes=' || mb.quota || 'M') AS quota_rule FROM admin_mailbox mb INNER JOIN admin_domain dom ON mb.domain_id=dom.id WHERE mb.address='%Ln' AND dom.name='%Ld'

iterate_query = SELECT email AS user FROM core_user

Note

Replace values between <> with yours.

LMTP

Local Mail Transport Protocol [http://en.wikipedia.org/wiki/Local_Mail_Transfer_Protocol] is used
to let Postfix deliver messages to Dovecot.

First, make sure the protocol is activated by looking at the
protocols setting (generally inside
dovecot.conf). It should be similar to the following example:

protocols = imap pop3 lmtp

Then, open the conf.d/10-master.conf, look for lmtp
service definition and add the following content inside:

service lmtp {
 # stuff before
 unix_listener /var/spool/postfix/private/dovecot-lmtp {
 mode = 0600
 user = postfix
 group = postfix
 }
 # stuff after
}

We assume here that Postfix is chrooted within
/var/spool/postfix.

Finally, open the conf.d/20-lmtp.conf and modify it as follows:

protocol lmtp {
 postmaster_address = postmaster@<domain>
 mail_plugins = $mail_plugins quota sieve
}

Replace <domain> by the appropriate value.

Note

If you don’t plan to apply quota or to use filters, just adapt the
content of the mail_plugins setting.

Quota

Modoboa lets adminstrators define per-domain and/or per-account limits
(quota). It also lists the current quota usage of each account. Those
features require Dovecot to be configured in a specific way.

Inside conf.d/10-mail.conf, add the quota plugin to the default
activated ones:

mail_plugins = quota

Inside conf.d/10-master.conf, update the dict service to set
proper permissions:

service dict {
 # If dict proxy is used, mail processes should have access to its socket.
 # For example: mode=0660, group=vmail and global mail_access_groups=vmail
 unix_listener dict {
 mode = 0600
 user = <user owning mailboxes>
 #group =
 }
}

Inside conf.d/20-imap.conf, activate the imap_quota plugin:

protocol imap {
 # ...

 mail_plugins = $mail_plugins imap_quota

 # ...
}

Inside dovecot.conf, activate the quota SQL dictionary backend:

dict {
 quota = <driver>:/etc/dovecot/dovecot-dict-sql.conf.ext
}

Inside conf.d/90-quota.conf, activate the quota dictionary backend:

plugin {
 quota = dict:User quota::proxy::quota
}

It will tell Dovecot to keep quota usage in the SQL dictionary.

Finally, edit the dovecot-dict-sql.conf.ext file and put the
following content inside:

connect = host=<db host> dbname=<db name> user=<db user> password=<password>
SQLite users
connect = /path/to/the/database.db

map {
 pattern = priv/quota/storage
 table = admin_quota
 username_field = username
 value_field = bytes
}
map {
 pattern = priv/quota/messages
 table = admin_quota
 username_field = username
 value_field = messages
}

PostgreSQL users

Database schema update

The admin_quota table is created by Django but unfortunately it
doesn’t support DEFAULT constraints (it only simulates them when the
ORM is used). As PostgreSQL is a bit strict about constraint
violations, you must execute the following query manually:

db=> ALTER TABLE admin_quota ALTER COLUMN bytes SET DEFAULT 0;
db=> ALTER TABLE admin_quota ALTER COLUMN messages SET DEFAULT 0;

Trigger

As indicated on Dovecot’s wiki [http://wiki2.dovecot.org/Quota/Dict], you need a trigger to
properly update the quota.

A working copy of this trigger is available on Github [https://raw.githubusercontent.com/modoboa/modoboa-installer/master/modoboa_installer/scripts/files/dovecot/install_modoboa_postgres_trigger.sql].

Download this file and copy it on the server running postgres. Then,
execute the following commands:

$ su - postgres
$ psql [modoboa database] < /path/to/modoboa_postgres_trigger.sql
$ exit

Replace [modoboa database] by the appropriate value.

Forcing recalculation

For existing installations, Dovecot (> 2) offers a command to
recalculate the current quota usages. For example, if you want to
update all usages, run the following command:

$ doveadm quota recalc -A

Be carefull, it can take a while to execute.

ManageSieve/Sieve

Modoboa lets users define filtering rules from the web interface. To
do so, it requires ManageSieve to be activated on your server.

Inside conf.d/20-managesieve.conf, make sure the following lines are
uncommented:

protocols = $protocols sieve

service managesieve-login {
 # ...
}

service managesieve {
 # ...
}

protocol sieve {
 # ...
}

Messages filtering using Sieve is done by the LDA.

Inside conf.d/15-lda.conf, activate the sieve plugin like this:

protocol lda {
 # Space separated list of plugins to load (default is global mail_plugins).
 mail_plugins = $mail_plugins sieve
}

Finally, configure the sieve plugin by editing the
conf.d/90-sieve.conf file. Put the follwing caontent inside:

plugin {
 # Location of the active script. When ManageSieve is used this is actually
 # a symlink pointing to the active script in the sieve storage directory.
 sieve = ~/.dovecot.sieve

 #
 # The path to the directory where the personal Sieve scripts are stored. For
 # ManageSieve this is where the uploaded scripts are stored.
 sieve_dir = ~/sieve
}

Restart Dovecot.

Now, you can go to the Postfix section to finish the installation.

Last-login tracking

To update the last_login attribute of an account after a succesful
IMAP or POP3 login, you can configure a post-login script [https://wiki.dovecot.org/PostLoginScripting].

Open conf.d/10-master.conf add the following configuration
(imap and pop3 services are already defined, you just need to
update them):

service imap {
 executable = imap postlogin
}

service pop3 {
 executable = pop3 postlogin
}

service postlogin {
 executable = script-login /usr/local/bin/postlogin.sh
 user = modoboa
 unix_listener postlogin {
 }
}

Then, you must create a script named
/usr/local/bin/postlogin.sh. According to your database
engine, the content will differ.

PostgreSQL

#!/bin/sh

psql -c "UPDATE core_user SET last_login=now() WHERE username='$USER'" > /dev/null

exec "$@"

MySQL

#!/bin/sh

DBNAME=XXX
DBUSER=XXX
DBPASSWORD=XXX

echo "UPDATE core_user SET last_login=now() WHERE username='$USER'" | mysql -u $DBUSER -p$DBPASSWORD $DBNAME

exec "$@"

Postfix

This section gives an example about building a simple virtual hosting
configuration with Postfix. Refer to the official documentation [http://www.postfix.org/VIRTUAL_README.html] for more explanation.

Map files

You first need to create configuration files (or map files) that will
be used by Postfix to lookup into Modoboa tables.

To automaticaly generate the requested map files and store them in a
directory, run the following command:

> cd <modoboa_instance_path>
> python manage.py generate_postfix_maps --destdir <directory>

<directory> is the directory where the files will be
stored. Answer the few questions and you’re done.

Configuration

Use the following configuration in the /etc/postfix/main.cf file
(this is just one possible configuration):

Stuff before
virtual_transport = lmtp:unix:private/dovecot-lmtp

virtual_mailbox_domains = <driver>:/etc/postfix/sql-domains.cf
virtual_alias_domains = <driver>:/etc/postfix/sql-domain-aliases.cf
virtual_alias_maps = <driver>:/etc/postfix/sql-aliases.cf

relay_domains = <driver>:/etc/postfix/sql-relaydomains.cf
transport_maps =
 <driver>:/etc/postfix/sql-transport.cf
 <driver>:/etc/postfix/sql-spliteddomains-transport.cf

smtpd_recipient_restrictions =
 # ...
 check_recipient_access
 <driver>:/etc/postfix/sql-maintain.cf
 <driver>:/etc/postfix/sql-relay-recipient-verification.cf
 permit_mynetworks
 reject_unauth_destination
 reject_unverified_recipient
 # ...

smtpd_sender_login_maps = <driver>:/etc/postfix/sql-sender-login-map.cf

smtpd_sender_restrictions =
 reject_sender_login_mismatch

Stuff after

Replace <driver> by the name of the database you use.

Restart Postfix.

OpenDKIM

Modoboa can generate DKIM [https://en.wikipedia.org/wiki/DomainKeys_Identified_Mail] keys for
the hosted domains but it won’t sign or check messages. To do that,
you need a dedicated software like OpenDKIM [http://opendkim.org/].

Note

The cron job in charge of creating DKIM keys must be run using the
same user than OpenDKIM (ie. opendkim in most cases).

Database

Since keys related information is stored in Modoboa’s database, you
need to tell OpenDKIM how it can access it.

First, make sure to install the required additional packages on your
system (libopendbx1-* on debian based distributions or opendbx-*
on CentOS, the complete name depends on your database engine).

Then, insert the following SQL view into Modoboa’s database:

PostgreSQL

CREATE OR REPLACE VIEW dkim AS (
 SELECT id, name as domain_name, dkim_private_key_path AS private_key_path,
 dkim_key_selector AS selector
 FROM admin_domain WHERE enable_dkim
);

MySQL/MariaDB

CREATE OR REPLACE VIEW dkim AS (
 SELECT id, name as domain_name, dkim_private_key_path AS private_key_path,
 dkim_key_selector AS selector
 FROM admin_domain WHERE enable_dkim=1
);

Configuration

You should find OpenDKIM’s configuration file at /etc/opendkim.conf.

Add the following content to it:

KeyTable dsn:<driver>://<user>:<password>@<db host>/<db name>/table=dkim?keycol=id?datacol=domain_name,selector,private_key_path
SigningTable dsn:<driver>://<user>:<password>@<db host>/<db name>/table=dkim?keycol=domain_name?datacol=id
Socket inet:12345@localhost

Replace values between <> by yours. Accepted values for driver
are pgsql or mysql. Make sure the user you specify has read
permission on the view created previously.

If you run a debian based system, make sure to adjust the following
setting in the /etc/default/opendkim file:

SOCKET=inet:12345@localhost

Eventually, reload OpenDKIM.

Postfix integration

Add the following lines to the /etc/postfix/main.cf file:

smtpd_milters = inet:127.0.0.1:12345
non_smtpd_milters = inet:127.0.0.1:12345
milter_default_action = accept
milter_content_timeout = 30s

and reload postfix.

Upgrade

Modoboa

Warning

The new version you are going to install may need to modify your
database. Before you start, make sure to backup everything!

Most of the time, upgrading your installation to a newer Modoboa
version only requires a few actions. In every case, you will need to
apply the general procedure first and then check if the version you
are installing requires specific actions.

In case you use a dedicated user and/or a virtualenv, do not forget to
use them:

> sudo -u <modoboa_user> -i
> source <virtuenv_path>/bin/activate

Then, run the following commands:

> pip install modoboa==<VERSION>
> cd <modoboa_instance_dir>
> python manage.py migrate
> python manage.py collectstatic
> python manage.py check --deploy

Once done, check if the version you are installing requires
Specific instructions.

Finally, restart your web server.

Sometimes, you might need to upgrade postfix map files too. To do so,
just run the generate_postfix_maps command on the same directory
than the one used for installation (/etc/postfix by default).

Make sure to use root privileges and run the following command:

> python manage.py generate_postfix_maps --destdir <directory>

Then, reload postfix.

Extensions

If a new version is available for an extension you’re using, it is
recommanded to install it. Upgrading an extensions is pretty and the
procedure is almost the same than the one used for Modoboa.

In case you use a dedicated user and/or a virtualenv, do not forget to
use them:

> sudo -i <modoboa_user>
> source <virtuenv_path>/bin/activate

Then, run the following commands:

> pip install <EXTENSION>==<VERSION>
> cd <modoboa_instance_dir>
> python manage.py migrate
> python manage.py collectstatic
> python manage.py check --deploy

Finally, restart your web server.

It is a generic upgrade procedure which will be enough most of the
time but it is generally a good idea to check the associated
documentation.

Rebuild Virtual Environment

Sometimes when upgrading your Operating System (eg from Ubuntu 17.04
to Ubuntu 17.10) your virtual environment running modoboa can get
corrupted. Your first response will be to panic but fear not! The
solution is in this document.

First things first:

Recover your database password

You will need to recover your database password (if using mysql or
postgresql). You will find this in /etc/postfix/sql-aliases.cf or
any file with sql-*.cf in the /etc/postfix directory.

Make note of this as you will need it when reconfiguring modoboa.

Reinstall Modoboa

Start out by backup up your modoboa settings file located in the
modoboa instance directory
(/srv/modoboa/instance/instance/settings.py if you used the
default installer configuration). This contains your current
configuration.

Next, you want to remove all current modoboa files.

After doing this, follow the manual installation instructions for Modoboa only as everything should be working properly.

After this completes, simply restore your backed up settings file to
/srv/instance/instance/settings.py (if you used installer default
configuration). You will then need to reinstall your extensions [http://modoboa.readthedocs.io/en/latest/index.html].

You can find which plugins you had in your settings.py file under
the MODOBOA_APPS variable.

Instructions to install extensions can also be found here [http://modoboa.readthedocs.io/en/latest/installation.html#extensions].

Once you have completed this step, you will need to run the following
commands:

> (env) $ cd <instance_dir>
> (env) $ python manage.py migrate
> (env) $ python manage.py collectstatic

You will then see a message similar to:

You have requested to collect static files at the destination
location as specified in your settings:

 /srv/modoboa/instance/sitestatic

This will overwrite existing files!
Are you sure you want to do this?

Type 'yes' to continue, or 'no' to cancel:

You will want to answer yes here then simply restart the uwsgi
process with service uwsgi restart and you should be up and
running again.

Simply log into your modoboa web panel and verify that your extensions
and webmail box is working.

Information

Rebuild instructions from:
https://help.pythonanywhere.com/pages/RebuildingVirtualenvs/

Specific instructions

1.13.0

Add 'modoboa.dnstools' to MODOBOA_APPS:

MODOBOA_APPS = (
 'modoboa',
 'modoboa.core',
 'modoboa.lib',
 'modoboa.admin',
 'modoboa.transport',
 'modoboa.relaydomains',
 'modoboa.limits',
 'modoboa.parameters',
 'modoboa.dnstools',
)

Add the following new settings:

CSRF_COOKIE_SECURE = True
SESSION_COOKIE_SECURE = True

modoboa-postfix-autoreply 1.5.0

Edit the /etc/postfix/main.cf file and remove the
sql-autoreplies-transport.cf map from the transport_maps if
present. Remove the corresponding proxy_read_maps entry if relevant.

Reload postfix.

1.10.0

Warning

Upgrade installed extensions BEFORE running check or
migrate commands.

Upgrade all your installed plugins to the following versions:

Warning

If you use the amavis plugin, make sure to include its
configuration as follows into settings.py:

from modoboa_amavis import settings as modoboa_amavis_settings
modoboa_amavis_settings.apply(globals())

	Name

	Version

	modoboa-amavis

	1.2.0

	modoboa-contacts

	0.5.0

	modoboa-dmarc

	1.1.0

	modoboa-imap-migration

	1.2.0

	modoboa-pdfcredentials

	1.3.0

	modoboa-postfix-autoreply

	1.4.0

	modoboa-radicale

	1.2.0

	modoboa-sievefilters

	1.4.0

	modoboa-stats

	1.4.0

	modoboa-webmail

	1.4.0

Edit the settings.py file and apply the following modifications.

Add 'modoboa.transport' to MODOBOA_APPS:

MODOBOA_APPS = (
 'modoboa',
 'modoboa.core',
 'modoboa.lib',
 'modoboa.admin',
 'modoboa.transport',
 'modoboa.relaydomains',
 'modoboa.limits',
 'modoboa.parameters',
)

Replace the following line:

MIDDLEWARE_CLASSES = (

by:

MIDDLEWARE = (

Update postfix map files as follows:

> rm -f <path>/modoboa-postfix-maps.chk
> python manage.py generate_postfix_maps --force --destdir <path>

Then, modify postfix’s configuration as follows:

smtpd_sender_login_maps =
 <driver>:<path>/sql-sender-login-map.cf

transport_maps =
 <driver>:<path>/sql-transport.cf
 <driver>:<path>/sql-spliteddomains-transport.cf
 # other map files...

Replace <driver> and <path> by your values.

If transport_maps contains sql-relaydomains-transport.cf, remove it.

Warning

If you make use of postfix’s proxymap server [http://www.postfix.org/proxymap.8.html], you must also update
the proxy_read_maps setting.

Reload postfix.

Add the following cron job in order to generate DKIM keys:

Generate DKIM keys (they will belong to the user running this job)
* * * * * root $PYTHON $INSTANCE/manage.py modo manage_dkim_keys

1.9.0

If you want to manage inactive accounts, look at Cleaning inactive accounts.

1.8.3

Edit the settings.py file and replace the following line:

BASE_DIR = os.path.dirname(os.path.dirname(__file__))

by:

BASE_DIR = os.path.realpath(os.path.dirname(os.path.dirname(__file__)))

1.8.0

Modoboa now relies on Django’s builtin password validation system [https://docs.djangoproject.com/en/1.10/topics/auth/passwords/#module-django.contrib.auth.password_validation]
to validate user passwords, instead of django-passwords.

Remove django-passwords from your system:

> sudo -u <modoboa_user> -i
> source <virtuenv_path>/bin/activate
> pip uninstall django-passwords

Edit the settings.py file and remove the following content:

django-passwords

PASSWORD_MIN_LENGTH = 8

PASSWORD_COMPLEXITY = {
 "UPPER": 1,
 "LOWER": 1,
 "DIGITS": 1
}

Add the following lines:

Password validation rules
AUTH_PASSWORD_VALIDATORS = [
 {
 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator',
 },
 {
 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator',
 },
 {
 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator',
 },
 {
 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator',
 },
 {
 'NAME': 'modoboa.core.password_validation.ComplexityValidator',
 'OPTIONS': {
 'upper': 1,
 'lower': 1,
 'digits': 1,
 'specials': 0
 }
 },
]

1.7.2

API documentation has evolved (because of the upgrade to Django Rest
Framework 3.6) and CKeditor is now embedded by default (thanks to the
django-ckeditor package). Some configuration changes are
required.

Edit your settings.py file and apply the following modifications:

	Update the INSTALLED_APPS variable as follows:

INSTALLED_APPS = (
 'django.contrib.auth',
 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.messages',
 'django.contrib.sites',
 'django.contrib.staticfiles',
 'reversion',
 'ckeditor',
 'ckeditor_uploader',
 'rest_framework',
 'rest_framework.authtoken',
)

	Update the REST_FRAMEWORK variable as follows:

REST_FRAMEWORK = {
 'DEFAULT_AUTHENTICATION_CLASSES': (
 'rest_framework.authentication.TokenAuthentication',
 'rest_framework.authentication.SessionAuthentication',
),
}

	Remove the SWAGGER_SETTINGS variable

	Add the following content

CKeditor

CKEDITOR_UPLOAD_PATH = "uploads/"

CKEDITOR_IMAGE_BACKEND = "pillow"

CKEDITOR_RESTRICT_BY_USER = True

CKEDITOR_BROWSE_SHOW_DIRS = True

CKEDITOR_ALLOW_NONIMAGE_FILES = False

CKEDITOR_CONFIGS = {
 'default': {
 'allowedContent': True,
 'toolbar': 'Modoboa',
 'width': None,
 'toolbar_Modoboa': [
 ['Bold', 'Italic', 'Underline'],
 ['JustifyLeft', 'JustifyCenter', 'JustifyRight', 'JustifyBlock'],
 ['BidiLtr', 'BidiRtl', 'Language'],
 ['NumberedList', 'BulletedList', '-', 'Outdent', 'Indent'],
 ['Undo', 'Redo'],
 ['Link', 'Unlink', 'Anchor', '-', 'Smiley'],
 ['TextColor', 'BGColor', '-', 'Source'],
 ['Font', 'FontSize'],
 ['Image',],
 ['SpellChecker']
],
 },
}

Don’t forget to run the following command:

> python manage.py collectstatic

1.7.1

If you used 1.7.0 for a fresh installation, please run the following commands:

> sudo -u <modoboa_user> -i
> source <virtuenv_path>/bin/activate
> cd <modoboa_instance_dir>
> python manage.py load_initial_data

1.7.0

This version requires Django >= 1.10 so you need to make some
modifications. It also brings internal API changes which are not
backward compatible so installed extensions must be upgraded too.

First of all, deactivate all installed extensions (edit the
settings.py file and comment the corresponding lines in
MODOBOA_APPS).

Edit the urls.py file of your local instance and replace its
content by the following one:

from django.conf.urls import include, url

urlpatterns = [
 url(r'', include('modoboa.urls')),
]

Edit the settings.py and apply the following changes:

	Add 'modoboa.parameters' to MODOBOA_APPS:

MODOBOA_APPS = (
 'modoboa',
 'modoboa.core',
 'modoboa.lib',
 'modoboa.admin',
 'modoboa.relaydomains',
 'modoboa.limits',
 'modoboa.parameters',
 # Modoboa extensions here.
)

	Add 'modoboa.core.middleware.LocalConfigMiddleware' to MIDDLEWARE_CLASSES:

 MIDDLEWARE_CLASSES = (
 'django.contrib.sessions.middleware.SessionMiddleware',
 'django.middleware.common.CommonMiddleware',
 'django.middleware.csrf.CsrfViewMiddleware',
 'django.contrib.auth.middleware.AuthenticationMiddleware',
 'django.contrib.messages.middleware.MessageMiddleware',
 'django.middleware.locale.LocaleMiddleware',
 'django.middleware.clickjacking.XFrameOptionsMiddleware',
 'modoboa.core.middleware.LocalConfigMiddleware',
 'modoboa.lib.middleware.AjaxLoginRedirect',
 'modoboa.lib.middleware.CommonExceptionCatcher',
 'modoboa.lib.middleware.RequestCatcherMiddleware',
)

	Modoboa used to provide a custom authentication backend
(modoboa.lib.authbackends.SimpleBackend) but it has been
removed. Replace it as follows:

AUTHENTICATION_BACKENDS = (
 # Other backends before...
 'django.contrib.auth.backends.ModelBackend',
)

	Remove TEMPLATE_CONTEXT_PROCESSORS and replace it by:

TEMPLATES = [
 {
 'BACKEND': 'django.template.backends.django.DjangoTemplates',
 'DIRS': [],
 'APP_DIRS': True,
 'OPTIONS': {
 'context_processors': [
 'django.template.context_processors.debug',
 'django.template.context_processors.request',
 'django.contrib.auth.context_processors.auth',
 'django.template.context_processors.i18n',
 'django.template.context_processors.media',
 'django.template.context_processors.static',
 'django.template.context_processors.tz',
 'django.contrib.messages.context_processors.messages',
 'modoboa.core.context_processors.top_notifications',
],
 'debug': False,
 },
 },
]

Run the following commands (load virtualenv if you use one):

> sudo -u <modoboa_user> -i
> source <virtuenv_path>/bin/activate
> cd <modoboa_instance_dir>
> python manage.py migrate
> python manage.py collectstatic

Finally, upgrade your extensions and reactivate them.

	Name

	Version

	modoboa-amavis

	1.1.0

	modoboa-dmarc

	1.0.0

	modoboa-imap-migration

	1.1.0

	modoboa-pdfcredentials

	1.1.0

	modoboa-postfix-autoreply

	1.2.0

	modoboa-radicale

	1.1.0

	modoboa-sievefilters

	1.1.0

	modoboa-stats

	1.1.0

	modoboa-webmail

	1.1.0

Command line shortcuts:

$ pip install modoboa-amavis==1.1.0
$ pip install modoboa-dmarc==1.0.0
$ pip install modoboa-imap-migration==1.1.0
$ pip install modoboa-pdfcredentials==1.1.0
$ pip install modoboa-postfix-autoreply==1.2.0
$ pip install modoboa-radicale==1.1.0
$ pip install modoboa-sievefilters==1.1.0
$ pip install modoboa-stats==1.1.0
$ pip install modoboa-webmail==1.1.0

And please make sure you use the latest version of the
django-versionfield2 package:

$ pip install -U django-versionfield2

Notes about quota changes and resellers

Reseller users now have a quota option in Resources tab. This is the quota
that a reseller can share between all its domains.

There are two quotas for a domain in the new version:

	Quota &

	Default mailbox quota.

[1]. Quota: quota shared between mailboxes
This quota is shared between all the mailboxes of this domain. This
value cannot exceed reseller’s quota and hence cannot be 0(unlimited)
if reseller has finite quota.

[2]. Default mailbox quota: default quota applied to mailboxes
This quota is the default quota applied to new mailboxes. This value
cannot exceed Quota[1] and hence cannot be 0(unlimited) if Quota[1] is
finite.

1.6.1

First of all, update postfix map files as follows:

> python manage.py generate_postfix_maps --destdir <path> --force-overwrite

Then, modify postfix’s configuration as follows:

smtpd_sender_login_maps =
 <driver>:<path>/sql-sender-login-mailboxes.cf
 <driver>:<path>/sql-sender-login-aliases.cf
 <driver>:<path>/sql-sender-login-mailboxes-extra.cf

Replace <driver> and <path> by your values.

Finally, reload postfix.

This release also deprecates some internal functions. As a result,
several extensions has been updated to maintain the compatibility. If
you enabled the notification service, you’ll find the list of
available updates directly in your Modoboa console.

For the others, here is the list:

	Name

	Version

	modoboa-amavis

	1.0.10

	modoboa-postfix-autoreply

	1.1.7

	modoboa-radicale

	1.0.5

	modoboa-stats

	1.0.9

Command line shortcut:

$ pip install modoboa-amavis==1.0.10
$ pip install modoboa-postfix-autoreply==1.1.7
$ pip install modoboa-radicale==1.0.5
$ pip install modoboa-stats==1.0.9

1.6.0

Warning

You have to upgrade extensions due to core.User model attribute change (user.group to user.role).
Otherwise, you will have an internal error after upgrade.
In particular: modoboa-amavisd [https://github.com/modoboa/modoboa-amavis/commit/35df4e48b124e56df930cda8c013af0c1fcaabf3], modoboa-stats [https://github.com/modoboa/modoboa-stats/commit/aa4a39ce65eb306ad6dec30a54eb58945b120274], modoboa-postfix-autoreply [https://github.com/modoboa/modoboa-postfix-autoreply/commit/20f98c8d1c0c0dbd420f47aefcbb0290022414a4] are concerned.

An interesting feature brougth by this version is the capability to
make different checks about MX records. For example, Modoboa can
query main DNSBL [https://en.wikipedia.org/wiki/DNSBL] providers
for every defined domain. With this, you will quickly know if one the
domains you manage is listed or not. To activate it, add the
following line to your crontab:

*/30 * * * * <optional_virtualenv_path/>python <modoboa_instance_dir>/manage.py modo check_mx

The communication with Modoboa public API has been reworked. Instead
of sending direct synchronous queries (for example to check new
versions), a cron job has been added. To activate it, add the
following line to your crontab:

0 * * * * <optional_virtualenv_path/>python <modoboa_instance_dir>/manage.py communicate_with_public_api

Please also note that public API now uses TLS so you must update your
configuration as follows:

MODOBOA_API_URL = 'https://api.modoboa.org/1/'

Finally, it is now possible to declare additional sender addresses on
a per-account basis. You need to update your postfix configuration in
order to use this functionality. Just edit the main.cf file
and change the following parameter:

smtpd_sender_login_maps =
 <driver>:/etc/postfix/sql-sender-login-mailboxes.cf
 <driver>:/etc/postfix/sql-sender-login-aliases.cf
 <driver>:/etc/postfix/sql-sender-login-mailboxes-extra.cf

1.5.0

The API has been greatly improved and a documentation is now
available. To enable it, add 'rest_framework_swagger' to the
INSTALLED_APPS variable in settings.py as follows:

INSTALLED_APPS = (
 'django.contrib.auth',
 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.messages',
 'django.contrib.sites',
 'django.contrib.staticfiles',
 'reversion',
 'rest_framework.authtoken',
 'rest_framework_swagger',
)

Then, add the following content into settings.py, just after
the REST_FRAMEWORK variable:

SWAGGER_SETTINGS = {
 "is_authenticated": False,
 "api_version": "1.0",
 "exclude_namespaces": [],
 "info": {
 "contact": "contact@modoboa.com",
 "description": ("Modoboa API, requires a valid token."),
 "title": "Modoboa API",
 }
}

You’re done. The documentation is now available at the following address:

http://<your instance address>/docs/api/

Finally, if you find a TEMPLATE_CONTEXT_PROCESSORS variable in
your settings.py file, make sure it looks like this:

TEMPLATE_CONTEXT_PROCESSORS = global_settings.TEMPLATE_CONTEXT_PROCESSORS + [
 'modoboa.core.context_processors.top_notifications',
]

1.4.0

Warning

Please make sure to use Modoboa 1.3.5 with an up-to-date database
before an upgrade to 1.4.0.

Warning

Do not follow the regular upgrade procedure for this version.

Some extension have been moved back into the main repository. The main
reason for that is that using Modoboa without them doesn’t make sense.

First of all, you must rename the following applications listed inside
the MODOBOA_APPS variable:

	Old name

	New name

	modoboa_admin

	modoboa.admin

	modoboa_admin_limits

	modoboa.limits

	modoboa_admin_relaydomains

	modoboa.relaydomains

Then, apply the following steps:

	Uninstall old extensions:

$ pip uninstall modoboa-admin modoboa-admin-limits modoboa-admin-relaydomains

	Install all extension updates using pip (check the Modoboa > Information page)

	Manually migrate database:

$ cd <instance_dir>
$ python manage.py migrate auth
$ python manage.py migrate admin 0001 --fake
$ python manage.py migrate admin
$ python manage.py migrate limits 0001 --fake
$ python manage.py migrate relaydomains 0001 --fake
$ python manage.py migrate

	Finally, update static files:

$ python manage.py collectstatic

This version also introduces a REST API. To enable it:

	Add 'rest_framework.authtoken' to the INSTALLED_APPS variable

	Add the following configuration inside settings.py:

Rest framework settings

REST_FRAMEWORK = {
 'DEFAULT_AUTHENTICATION_CLASSES': (
 'rest_framework.authentication.TokenAuthentication',
),
 'DEFAULT_PERMISSION_CLASSES': (
 'rest_framework.permissions.IsAuthenticated',
)
}

	Run the following command:

$ python manage.py migrate

1.3.5

To enhance security, Modoboa now checks the strength of user
passwords <https://github.com/dstufft/django-passwords>_.

To use this feature, add the following configuration into the settings.py file:

django-passwords

PASSWORD_MIN_LENGTH = 8

PASSWORD_COMPLEXITY = {
 "UPPER": 1,
 "LOWER": 1,
 "DIGITS": 1
}

1.3.2

Modoboa now uses the atomic requests mode to preserve database
consistency (reference [https://docs.djangoproject.com/en/1.7/topics/db/transactions/#tying-transactions-to-http-requests]).

To enable it, update the DATABASES variable in settings.py as
follows:

DATABASES = {
 "default": {
 # stuff before...
 "ATOMIC_REQUESTS": True
 },
 "amavis": {
 # stuff before...
 "ATOMIC_REQUESTS": True
 }
}

1.3.0

This release does not bring awesome new features but it is a necessary
bridge to the future of Modoboa. All extensions now have their own git
repository and the deploy process has been updated to reflect this
change.

Another important update is the use of Django 1.7. Besides its new
features, the migration system has been reworked and is now more
robust than before.

Before we begin with the procedure, here is a table showing old
extension names and their new name:

	Old name

	New package name

	New module name

	modoboa.extensions.admin

	modoboa-admin

	modoboa_admin

	modoboa.extensions.limits

	modoboa-admin-limits

	modoboa_admin_limits

	modoboa.extensions.postfix_autoreply

	modoboa-postfix-autoreply

	modoboa_postfix_autoreply

	modoboa.extensions.postfix_relay_domains

	modoboa-admin-relaydomains

	modoboa_admin_relaydomains

	modoboa.extensions.radicale

	modoboa-radicale

	modoboa_radicale

	modoboa.extensions.sievefilters

	modoboa-sievefilters

	modoboa_sievefilters

	modoboa.extensions.stats

	modoboa-stats

	modoboa_stats

	modoboa.extensions.webmail

	modoboa-webmail

	modoboa_webmail

Here are the required steps:

	Install the extensions using pip (look at the second column in the table above):

$ pip install <the extensions you want>

	Remove south from INSTALLED_APPS

	Rename old extension names inside MODOBOA_APPS (look at the third column in the table above)

	Remove modoboa.lib.middleware.ExtControlMiddleware from MIDDLEWARE_CLASSES

	Change DATABASE_ROUTERS to:

DATABASE_ROUTERS = ["modoboa_amavis.dbrouter.AmavisRouter"]

	Run the following commands:

$ cd <modoboa_instance_dir>
$ python manage.py migrate

	Reply yes to the question

	Run the following commands:

$ python manage.py load_initial_data
$ python manage.py collectstatic

	The cleanup job has been renamed in Django, so you have to modify your crontab entry:

- 0 0 * * * <modoboa_site>/manage.py cleanup
+ 0 0 * * * <modoboa_site>/manage.py clearsessions

1.2.0

A new notification service let administrators know about new Modoboa
versions. To activate it, you need to update the
TEMPLATE_CONTEXT_PROCESSORS variable like this:

from django.conf import global_settings

TEMPLATE_CONTEXT_PROCESSORS = global_settings.TEMPLATE_CONTEXT_PROCESSORS + (
 'modoboa.core.context_processors.top_notifications',
)

and to define the new MODOBOA_API_URL variable:

MODOBOA_API_URL = 'http://api.modoboa.org/1/'

The location of external static files has changed. To use them, add a
new path to the STATICFILES_DIRS:

Additional locations of static files
STATICFILES_DIRS = (
 # Put strings here, like "/home/html/static" or "C:/www/django/static".
 # Always use forward slashes, even on Windows.
 # Don't forget to use absolute paths, not relative paths.
 "<path/to/modoboa/install/dir>/bower_components",
)

Run the following commands to define the hostname of your instance:

$ cd <modoboa_instance_dir>
$ python manage.py set_default_site <hostname>

If you plan to use the Radicale extension:

	Add 'modoboa.extensions.radicale' to the MODOBOA_APPS variable

	Run the following commands:

$ cd <modoboa_instance_dir>
$ python manage.py syncdb

Warning

You also have to note that the sitestatic directory has moved from
<path to your site's dir> to <modoboa's root url> (it’s probably
the parent directory). You have to adapt your web server configuration
to reflect this change.

Configuration

Online parameters

Modoboa provides online panels to modify internal parameters. There
are two available levels:

	Application level: global parameters, define how the application
behaves. Available at Modoboa > Parameters

	User level: per user customization. Available at User > Settings >
Preferences

Regardless level, parameters are displayed using tabs, each tab
corresponding to one application.

General parameters

The admin application exposes several parameters, they are presented below:

	Name

	Tab

	Description

	Default value

	Authentication type

	General

	The backend used for
authentication

	Local

	Default password
scheme

	General

	Scheme used to crypt
mailbox passwords

	crypt

	Rounds

	General

	Number of rounds (only used by
sha256crypt and
sha512crypt). Must be between
1000 and 999999999, inclusive.

	70000

	Secret key

	General

	A key used to
encrypt users’
password in sessions

	random value

	Sender address

	General

	Email address used to send
notifications.

	

	Enable communication

	General

	Enable communication with
Modoboa public API

	yes

	Check new versions

	General

	Automatically checks if a newer
version is available

	yes

	Send statistics

	General

	Send statistics to Modoboa
public API (counters and used
extensions)

	yes

	Top notifications
check interval

	General

	Interval between two top
notification checks (in
seconds)

	30

	Maximum log record
age

	General

	The maximum age in
days of a log record

	365

	Items per page

	General

	Number of displayed
items per page

	30

	Default top
redirection

	General

	The default
redirection used
when no application
is specified

	userprefs

	Enable MX checks

	Admin

	Check that every domain has a
valid MX record

	yes

	Valid MXs

	Admin

	A list of IP or network address
every MX should match. A
warning will be sent if a
record does not respect this
it.

	

	Enable DNSBL checks

	Admin

	Check every domain against
major DNSBL providers

	yes

	DKIM keys storage
directory

	Admin

	
	Path to a directory where DKIM

	generated keys will be stored

	

	Default DKIM key
length

	Admin

	The default size (in bits) for
new keys

	2048

	Handle mailboxes on
filesystem

	Admin

	Rename or remove
mailboxes on the
filesystem when they
get renamed or
removed within
Modoboa

	no

	Mailboxes owner

	Admin

	The UNIX account who
owns mailboxes on
the filesystem

	vmail

	Default domain quota

	Admin

	Default quota (in MB) applied
to freshly created domains with
no value specified. A value of
0 means no quota.

	0

	Automatic account
removal

	Admin

	When a mailbox is
removed, also remove
the associated
account

	no

	Automatic
domain/mailbox
creation

	Admin

	Create a domain and a mailbox
when an account is
automatically created

	yes

Note

If you are not familiar with virtual domain hosting, you should
take a look at postfix’s documentation [http://www.postfix.org/VIRTUAL_README.html]. This How to [https://help.ubuntu.com/community/PostfixVirtualMailBoxClamSmtpHowto]
also contains useful information.

Note

A random secret key will be generated each time the Parameters
page is refreshed and until you save parameters at least once.

Note

Specific LDAP parameters are also available, see LDAP
authentication.

Media files

Modoboa uses a specific directory to upload files (ie. when the
webmail is in use) or to create ones (ex: graphical statistics). This
directory is named media and is located inside modoboa’s
installation directory (called modoboa_site in this
documentation).

To work properly, the system user which runs modoboa (www-data,
apache, whatever) must have write access to this directory.

Customization

Custom logo

You have the possibility to use a custom logo instead of the default
one on the login page.

To do so, open the settings.py file and add a
MODOBOA_CUSTOM_LOGO variable. This variable must contain the
relative URL of your logo under MEDIA_URL. For example:

MODOBOA_CUSTOM_LOGO = os.path.join(MEDIA_URL, "custom_logo.png")

Then copy your logo file into the directory indicated by
MEDIA_ROOT.

Host configuration

Note

This section is only relevant when Modoboa handles mailboxes
renaming and removal from the filesystem.

To manipulate mailboxes on the filesystem, you must allow the user who
runs Modoboa to execute commands as the user who owns mailboxes.

To do so, edit the /etc/sudoers file and add the following inside:

<user_that_runs_modoboa> ALL=(<mailboxes owner>) NOPASSWD: ALL

Replace values between <> by the ones you use.

Time zone and language

Modoboa is available in many languages.

To specify the default language to use, edit the settings.py file
and modify the LANGUAGE_CODE variable:

LANGUAGE_CODE = 'fr' # or 'en' for english, etc.

Note

Each user has the possibility to define the language he prefers.

In the same configuration file, specify the timezone to use by
modifying the TIME_ZONE variable. For example:

TIME_ZONE = 'Europe/Paris'

Sessions management

Modoboa uses Django’s session framework [https://docs.djangoproject.com/en/dev/topics/http/sessions/?from=olddocs]
to store per-user information.

Few parameters need to be set in the settings.py configuration
file to make Modoboa behave as expected:

SESSION_EXPIRE_AT_BROWSER_CLOSE = False # Default value

This parameter is optional but you must ensure it is set to False
(the default value).

The default configuration file provided by the modoboa-admin.py
command is properly configured.

Logging authentication

To trace login attempts to the web interface, Modoboa uses python
SysLogHandler [https://docs.python.org/3/library/logging.handlers.html#logging.handlers.SysLogHandler]
so you can see them in your syslog authentication log file
(/var/log/auth.log in most cases).

Depending on your configuration, you may have to edit the settings.py file
and add ‘address’: ‘/dev/log’ to the logging section:

'syslog-auth': {
 'class': 'logging.handlers.SysLogHandler',
 'facility': SysLogHandler.LOG_AUTH,
 'address': '/dev/log',
 'formatter': 'syslog'
},

External authentication

LDAP

Modoboa supports external LDAP authentication using the following extra components:

	Python LDAP client [http://www.python-ldap.org/]

	Django LDAP authentication backend [http://pypi.python.org/pypi/django-auth-ldap]

If you want to use this feature, you must first install those components:

$ pip install python-ldap django-auth-ldap

Then, all you have to do is to modify the settings.py file. Add a
new authentication backend to the AUTHENTICATION_BACKENDS variable,
like this:

AUTHENTICATION_BACKENDS = (
 'modoboa.lib.authbackends.LDAPBackend',
 'django.contrib.auth.backends.ModelBackend',
)

Finally, go to Modoboa > Parameters > General and set Authentication
type to LDAP.

From there, new parameters will appear to let you configure the way
Modoboa should connect to your LDAP server. They are described just below:

	Name

	Description

	Default value

	Server address

	The IP address of
the DNS name of the
LDAP server

	localhost

	Server port

	The TCP port number
used by the LDAP
server

	389

	Use a secure
connection

	Use an SSL/TLS
connection to access
the LDAP server

	no

	Authentication
method

	Choose the
authentication
method to use

	Direct bind

	User DN template
(direct bind mode)

	The template used to
construct a user’s
DN. It should
contain one
placeholder
(ie. %(user)s)

	

	Bind BN

	The distinguished
name to use when
binding to the LDAP
server. Leave empty
for an anonymous
bind

	

	Bind password

	The password to use
when binding to the
LDAP server (with
‘Bind DN’)

	

	Search base

	The distinguished
name of the search
base

	

	Search filter

	An optional filter string
(e.g. ‘(objectClass=person)’). In
order to be valid, it must be
enclosed in parentheses.

	(mail=%(user)s)

	Password attribute

	The attribute used
to store user
passwords

	userPassword

	Active Directory

	Tell if the LDAP
server is an Active
Directory one

	no

	Administrator groups

	Members of those LDAP Posix
groups will be created ad domain
administrators. Use ‘;’
characters to separate groups.

	

	Group type

	The type of group used by your
LDAP directory.

	PosixGroup

	Groups search base

	The distinguished name of the
search base used to find groups

	

	Domain/mailbox
creation

	Automatically create a domain and
a mailbox when a new user is
created just after the first
successful authentication. You
will generally want to disable
this feature when the relay
domains extension is in use

	yes

If you need additional parameters, you will find a detailled
documentation here [http://packages.python.org/django-auth-ldap/].

Once the authentication is properly configured, the users defined in
your LDAP directory will be able to connect to Modoboa, the associated
domain and mailboxes will be automatically created if needed.

The first time a user connects to Modoboa, a local account is created
if the LDAP username is a valid email address. By default, this
account belongs to the SimpleUsers group and it has a mailbox.

To automatically create domain administrators, you can use the
Administrator groups setting. If a LDAP user belongs to one the
listed groups, its local account will belong to the DomainAdmins
group. In this case, the username is not necessarily an email address.

Users will also be able to update their LDAP password directly from
Modoboa.

Note

Modoboa doesn’t provide any synchronization mechanism once a user
is registered into the database. Any modification done from the
directory to a user account will not be reported to Modoboa (an
email address change for example). Currently, the only solution is
to manually delete the Modoboa record, it will be recreated on the
next user login.

SMTP

It is possible to use an existing SMTP server as an authentication
source. To enable this feature, edit the settings.py file and
change the following setting:

AUTHENTICATION_BACKENDS = (
 'modoboa.lib.authbackends.SMTPBackend',
 'django.contrib.auth.backends.ModelBackend',
)

SMTP server location can be customized using the following settings:

AUTH_SMTP_SERVER_ADDRESS = 'localhost'
AUTH_SMTP_SERVER_PORT = 25
AUTH_SMTP_SECURED_MODE = None # 'ssl' or 'starttls' are accepted

Database maintenance

Cleaning the logs table

Modoboa logs administrator specific actions into the database. A
clean-up script is provided to automatically remove oldest
records. The maximum log record age can be configured through the
online panel.

To use it, you can setup a cron job to run every night:

0 0 * * * <modoboa_site>/manage.py cleanlogs
#
Or like this if you use a virtual environment:
0 0 * * * <virtualenv path/bin/python> <modoboa_site>/manage.py cleanlogs

Cleaning the session table

Django does not provide automatic purging. Therefore, it’s your job to
purge expired sessions on a regular basis.

Django provides a sample clean-up script: django-admin.py
clearsessions. That script deletes any session in the session table
whose expire_date is in the past.

For example, you could setup a cron job to run this script every night:

0 0 * * * <modoboa_site>/manage.py clearsessions
#
Or like this if you use a virtual environment:
0 0 * * * <virtualenv path/bin/python> <modoboa_site>/manage.py clearsessions

Cleaning inactive accounts

Thanks to Last-login tracking, it is now possible to monitor inactive
accounts. An account is considered inactive if no login has been
recorded for the last 30 days (this value can be changed through the
admin panel).

A management command is available to disable or delete inactive
accounts. For example, you could setup a cron job to run it every
night:

0 0 * * * <modoboa_site>/manage.py clean_inactive_accounts
#
Or like this if you use a virtual environment:
0 0 * * * <virtualenv path/bin/python> <modoboa_site>/manage.py clean_inactive_accounts

The default behaviour is to disable accounts. You can delete them
using the --delete option.

Moving to Modoboa

You have an existing platform and you’d like to move to Modoboa, the
following tools could help you.

From postfixadmin

A dedicated command allows you to convert an existing postfixadmin [http://postfixadmin.sourceforge.net/] database to a Modoboa
one. Consult the documentation [https://github.com/modoboa/modoboa-pfxadmin-migrate] to know more
about the process.

Using CSV files

Modoboa allows you to import any object (domain, domain alias, mailbox
and alias) using a simple CSV file encoded using UTF8. Each line
corresponds to a single object and must respect one of the following
format:

domain; <name: string>; <quota: integer>; <default mailbox quota: integer>; <enabled: boolean>
domainalias; <name: string>; <targeted domain: string>; <enabled: boolean>
relaydomain; <name: string>; <target host: string>; <target port: integer>; <service: string>; <enabled: boolean>; <verify recipients: boolean>
account; <loginname: string>; <password: string>; <first name: string>; <last name: string>; <enabled: boolean>; <group: string>; <address: string>; <quota: integer>; [<domain: string>, ...]
alias; <address: string>; <enabled: boolean>; <recipient: string>; ...

Boolean fields accept the following values: true, 1, yes,
y (case insensitive). Any other value will be evaluated as false.

Warning

The order does matter. Objects are created sequencially so a
domain must be created before its mailboxes and aliases and a
mailbox must created before its alias(es).

To actually import such a file:

> sudo -u <modoboa_user> -i
> source <virtualenv_path>/bin/activate
> cd <modoboa_instance_dir>
> python manage.py modo import <your file>

Available options can be listed using the following command:

> python manage.py modo import -h

REST API

To ease the integration with external sources (software or other),
Modoboa provides a REST API.

Every installed instance comes with a ready-to-use API and a
documentation. You will find them using the following url patterns:

	API: http://<hostname>/api/v1/

	Documentation: http://<hostname>/docs/api/

An example [https://demo.modoboa.org/docs/api/] of this
documentation is available on the official demo.

Using this API requires an authentication and for now, only a token
based authentication is supported. To get a valid token, log-in to
your instance with a super administrator, go to Settings > API and
activate the API access. Press the Update button and wait until the
page is reloaded, the token will be displayed.

[image: _images/api_access_form.png]
To make valid API calls, every requests you send must embed this token
within an Authorization HTTP header like this:

Authorization: Token <YOUR_TOKEN>

and the content type of those requests must be application/json.

How to contribute

Contributions are always welcome. If you want to submit a patch,
please respect the following rules:

	Open a pull request on the appropriate repository

	Respect PEP8 [https://www.python.org/dev/peps/pep-0008/]

	Document your patch and respect PEP 257 [https://www.python.org/dev/peps/pep-0257/]

	Add unit tests and make sure the global coverage does not decrease

If all those steps are validated, your contribution will generally be
integrated.

Table of contents

	Useful tips

	Create a new plugin

Useful tips

You would like to work on Modoboa but you don’t know where to start?
You’re at the right place! Browse this page to learn useful tips.

Docker

A docker image is available for developers. To use it, you must
install docker [https://docs.docker.com/install/] and
docker-compose [https://docs.docker.com/compose/install/] first.

Then, just run the following command:

$ docker-compose up

It will start the docker environment and make a Modoboa instance
available at http://localhost:8000.

If you don’t want to use docker or need a more complex development
setup, go to the next section.

Prepare a virtual environment

A virtual environment [http://virtualenv.readthedocs.org/en/latest/] is a good way to
setup a development environment on your machine.

Note

virtualenv is available on all major distributions, just
install it using your favorite packages manager.

To do so, run the following commands:

$ virtualenv <path>
$ source <path>/bin/activate
$ git clone https://github.com/modoboa/modoboa.git
$ cd modoboa
$ python setup.py develop
$ pip install -r dev-requirements.txt

The develop command creates a symbolic link to your local copy so
any modification you make will be automatically available in your
environment, no need to copy them.

Deploy an instance for development

Warning

Make sure to create a database before running
this step. The format of the database url is also described in this
page.

Now that you have a running environment, you’re
ready to deploy a test instance:

$ cd <path>
$ modoboa-admin.py deploy --dburl default:<database url> --domain localhost --devel instance
$ python manage.py runserver

You’re ready to go! You should be able to access Modoboa at
http://localhost:8000 using admin:password as credentials.

Manage static files

Modoboa uses bower [http://bower.io/] (thanks to django-bower [https://github.com/nvbn/django-bower]) to manage its CSS and
javascript dependencies.

Those dependencies are listed in a file called dev_settings.py
located inside the <path_to_local_copy>/modoboa/core
directory.

If you want to add a new dependency, just complete the
BOWER_INSTALLED_APPS parameter and run the following command:

$ python manage.py bower install

It will download and store the required files into the
<path_to_local_copy>/modoboa/bower_components directory.

Test your modifications

If you deployed a specific instance for your development needs, you
can run the tests suite as follows:

> python manage.py test modoboa.core modoboa.lib modoboa.admin modoboa.limits modoboa.relaydomains

Otherwise, you can run the tests suite from the repository using tox [https://tox.readthedocs.io].

Start a basic Modoboa instance

From the repository, run the following command to launch a simple
instance with a few fixtures:

> tox -e serve

You can use admin/password to log in.

Build the documentation

If you need to modify the documenation and want to see the result, you
can build it as follows:

> tox -e doc
> firefox .tox/doc/tmp/html/index.html

FAQ

bower command is missing in manage.py

bower command is missing in manage.py if you don’t use the
--devel option of the modoboa-admin.py deploy command.

To fix it, regenerate your instance or update your settings.py
file manually. Look at devmode in
https://github.com/tonioo/modoboa/blob/master/modoboa/core/commands/templates/settings.py.tpl

Create a new plugin

Introduction

Modoboa offers a plugin API to expand its capabilities. The current
implementation provides the following possibilities:

	Expand navigation by adding entry points to your plugin inside the GUI

	Access and modify administrative objects (domains, mailboxes, etc.)

	Register callback actions for specific events

Plugins are nothing more than Django applications with an extra piece
of code that integrates them into Modoboa. The
modo_extension.py file will contain a complete description of
the plugin:

	Admin and user parameters

	Custom menu entries

The communication between both applications is provided by Django
signals [https://docs.djangoproject.com/en/1.9/topics/signals/].

The following subsections describe the plugin architecture and explain
how you can create your own.

The required glue

To create a new plugin, just start a new django application like
this (into Modoboa’s directory):

$ python manage.py startapp

Then, you need to register this application using the provided
API. Just copy/paste the following example into the modo_extension.py file
of the future extension:

from modoboa.core.extensions import ModoExtension, exts_pool

class MyExtension(ModoExtension):
 """My custom Modoboa extension."""

 name = "myext"
 label = "My Extension"
 version = "0.1"
 description = "A description"
 url = "myext_root_location" # optional, name is used if not defined

 def load(self):
 """This method is called when Modoboa loads available and activated plugins.

 Declare parameters and register events here.
 """
 pass

 def load_initial_data(self):
 """Optional: provide initial data for your extension here."""
 pass

exts_pool.register_extension(MyExtension)

Once done, simply add your extension’s module name to the
MODOBOA_APPS variable located inside settings.py. Finally,
run the following commands:

$ python manage.py migrate
$ python manage.py load_initial_data
$ python manage.py collectstatic

Parameters

A plugin can declare its own parameters. There are two levels available:

	‘Global’ parameters : used to configure the plugin, editable
inside the Admin > Settings > Parameters page

	‘User’ parameters : per-user parameters (or preferences), editable
inside the Options > Preferences page

Playing with parameters

Parameters are defined using Django forms [https://docs.djangoproject.com/en/1.9/topics/forms/] and Modoboa
adds two special forms you can inherit depending on the level of
parameter(s) you want to add:

	modoboa.parameters.forms.AdminParametersForm: for general parameters

	modoboa.parameters.forms.UserParametersForm: for user parameters

To register new parameters, add the following line into the load
method of your plugin class:

from modoboa.parameters import tools as param_tools
param_tools.registry.add(
 LEVEL, YourForm, ugettext_lazy("Title"))

Replace LEVEL by "global" or "user".

Custom role permissions

Modoboa uses Django’s internal permission system. Administrative roles
are nothing more than groups (Group instances).

An extension can add new permissions to a group by listening to the
extra_role_permissions signal. Here is an example:

from django.dispatch import receiver
from modoboa.core import signals as core_signals

PERMISSIONS = {
 "Resellers": [
 ("relaydomains", "relaydomain", "add_relaydomain"),
 ("relaydomains", "relaydomain", "change_relaydomain"),
 ("relaydomains", "relaydomain", "delete_relaydomain"),
 ("relaydomains", "service", "add_service"),
 ("relaydomains", "service", "change_service"),
 ("relaydomains", "service", "delete_service")
]
}

@receiver(core_signals.extra_role_permissions)
def extra_role_permissions(sender, role, **kwargs):
 """Add permissions to the Resellers group."""
 return constants.PERMISSIONS.get(role, [])

Extending admin forms

The forms used to edit objects (account, domain, etc.) through the admin
panel are composed of tabs. You can extend them (ie. add new
tabs) in a pretty easy way thanks to custom signals.

Account

To add a new tab to the account edition form, define new listeners
(handlers) for the following signals:

	modoboa.admin.signals.extra_account_forms

	modoboa.admin.signals.get_account_form_instances

	modoboa.admin.signals.check_extra_account_form (optional)

Example:

from django.dispatch import receiver
from modoboa.admin import signals as admin_signals

@receiver(admin_signals.extra_account_forms)
def extra_account_form(sender, user, account, **kwargs):
 return [
 {"id": "tabid", "title": "Title", "cls": MyFormClass}
]

@receiver(admin_signals.get_account_form_instances)
def fill_my_tab(sender, user, account, **kwargs):
 return {"id": my_instance}

Domain

To add a new tab to the domain edition form, define new listeners
(handlers) for the following signals:

	modoboa.admin.signals.extra_domain_forms

	modoboa.admin.signals.get_domain_form_instances

Example:

from django.dispatch import receiver
from modoboa.admin import signals as admin_signals

@receiver(admin_signals.extra_domain_forms)
def extra_account_form(sender, user, domain, **kwargs):
 return [
 {"id": "tabid", "title": "Title", "cls": MyFormClass}
]

@receiver(admin_signals.get_domain_form_instances)
def fill_my_tab(sender, user, domain, **kwargs):
 return {"id": my_instance}

Contributors

	Antidot [http://antidot.com]

	Bearstech [http://bearstech.com]

	Dalnix [https://www.dalnix.se/]

Index

 Sometimes when upgrading your Operating System (eg from Ubuntu 17.04
to Ubuntu 17.10) your virtual environment running modoboa can get
corrupted. Your first response will be to panic but fear not! The
solution is in this document.

First things first:

Recover your database password

You will need to recover your database password (if using mysql or
postgresql). You will find this in /etc/postfix/sql-aliases.cf or
any file with sql-*.cf in the /etc/postfix directory.

Make note of this as you will need it when reconfiguring modoboa.

Reinstall Modoboa

Start out by backup up your modoboa settings file located in the
modoboa instance directory
(/srv/modoboa/instance/instance/settings.py if you used the
default installer configuration). This contains your current
configuration.

Next, you want to remove all current modoboa files.

After doing this, follow the manual installation instructions for Modoboa only as everything should be working properly.

After this completes, simply restore your backed up settings file to
/srv/instance/instance/settings.py (if you used installer default
configuration). You will then need to reinstall your extensions [http://modoboa.readthedocs.io/en/latest/index.html].

You can find which plugins you had in your settings.py file under
the MODOBOA_APPS variable.

Instructions to install extensions can also be found here [http://modoboa.readthedocs.io/en/latest/installation.html#extensions].

Once you have completed this step, you will need to run the following
commands:

> (env) $ cd <instance_dir>
> (env) $ python manage.py migrate
> (env) $ python manage.py collectstatic

You will then see a message similar to:

You have requested to collect static files at the destination
location as specified in your settings:

 /srv/modoboa/instance/sitestatic

This will overwrite existing files!
Are you sure you want to do this?

Type 'yes' to continue, or 'no' to cancel:

You will want to answer yes here then simply restart the uwsgi
process with service uwsgi restart and you should be up and
running again.

Simply log into your modoboa web panel and verify that your extensions
and webmail box is working.

Information

Rebuild instructions from:
https://help.pythonanywhere.com/pages/RebuildingVirtualenvs/

 _static/ajax-loader.gif

_static/api_access_form.png
AP
APl access control your access to Modoboa AP|

Preferences

Profile
APl access token

0878c502447d02602ca6b16a175cc7e1643e5ibe

_images/api_access_form.png
AP
APl access control your access to Modoboa AP|

Preferences

Profile
APl access token

0878c502447d02602ca6b16a175cc7e1643e5ibe

_images/modoboa_logo.png
odoboaQ

mail hosting made simple

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Modoboa documentation

 		
 Installation

 		
 Requirements

 		
 Recommended way

 		
 Manual installation

 		
 Modoboa

 		
 Web server

 		
 Dovecot

 		
 Postfix

 		
 OpenDKIM

 		
 Extensions

 		
 Upgrade

 		
 Modoboa

 		
 Extensions

 		
 Rebuild Virtual Environment

 		
 Recover your database password

 		
 Reinstall Modoboa

 		
 Information

 		
 Specific instructions

 		
 1.13.0

 		
 modoboa-postfix-autoreply 1.5.0

 		
 1.10.0

 		
 1.9.0

 		
 1.8.3

 		
 1.8.0

 		
 1.7.2

 		
 1.7.1

 		
 1.7.0

 		
 1.6.1

 		
 1.6.0

 		
 1.5.0

 		
 1.4.0

 		
 1.3.5

 		
 1.3.2

 		
 1.3.0

 		
 1.2.0

 		
 Configuration

 		
 Online parameters

 		
 General parameters

 		
 Media files

 		
 Customization

 		
 Custom logo

 		
 Host configuration

 		
 Time zone and language

 		
 Sessions management

 		
 Logging authentication

 		
 External authentication

 		
 LDAP

 		
 SMTP

 		
 Database maintenance

 		
 Cleaning the logs table

 		
 Cleaning the session table

 		
 Cleaning inactive accounts

 		
 Moving to Modoboa

 		
 From postfixadmin

 		
 Using CSV files

 		
 REST API

 		
 How to contribute

 		
 Table of contents

 		
 Useful tips

 		
 Create a new plugin

 		
 Contributors

_static/modoboa_logo.png
odoboaQ

mail hosting made simple

_static/plus.png

_static/file.png

_static/minus.png

_static/up.png

_static/up-pressed.png

