
Modoboa Documentation
Release 1.1.0

Antoine Nguyen

January 03, 2014

Contents

i

ii

CHAPTER 1

Getting started

1.1 Installation

1.1.1 Requirements

• Python version 2.6+

• Django version 1.5+

• south version 0.7+

• lxml python module

• pycrypto python module

• rrdtool python binding

• sievelib python module

• chardet python module

• argparse python module

• reversion python module

1.1.2 Get Modoboa

You can choose between two options:

• Use the Python package available on the PyPI

• Download the sources tarball

The easiest one is to install it from PyPI. Just run the following command and you’re done:

$ pip install modoboa

If you prefer to use the tarball, download the latest one and run the following procedure:

$ tar xzf modoboa-<version>.tar.gz
$ cd modoboa-<version>
$ python setup.py install

1

http://python.org/
http://docs.djangoproject.com/en/dev/intro/install/#intro-install
http://south.aeracode.org/
http://codespeak.net/lxml/
http://www.dlitz.net/software/pycrypto/
http://oss.oetiker.ch/rrdtool/
http://pypi.python.org/pypi/sievelib
http://pypi.python.org/pypi/chardet
http://pypi.python.org/pypi/argparse
https://github.com/etianen/django-reversion
http://pypi.python.org/pypi

Modoboa Documentation, Release 1.1.0

All dependencies will be installed regardless the way you chose. The only exception concerns the RRDtool binding
because there isn’t any python package available, it is directly provided with the official tarball.

Fortunately, all major distributions include a ready-to-use package. On Debian/Ubuntu:

$ apt-get install libcairo2-dev libpango1.0-dev librrd-dev
$ apt-get install python-rrdtool

virtualenv users

When you deploy an application using virtualenv, you may have to compile some dependencies. For example, mod-
oboa relies on lxml, which is a C python module. In order to install it, you will need to install the following require-
ments:

• python development files

• libxslt development files

• libxml2 development files

• libz development files

On a Debian like system, just run the following command:

$ apt-get install python-dev libxml2-dev libxslt-dev zlib1g-dev

1.1.3 Database

Thanks to Django, Modoboa supports several databases. Depending on the one you will use, you must install the
appropriate python package:

• mysqldb for MySQL

• psycopg2 for PostgreSQL

Then, create a user and a database that will be used by Modoboa. Make sure your database is using UTF8 as a default
charset.

1.1.4 Deployment

modoboa-admin.py, a command line tool, let you deploy a ready-to-use Modoboa site using only one instruction:

$ modoboa-admin.py deploy modoboa_example --syncdb --collectstatic [--with-amavis] [--dburl database-url] [--amavis_dburl database-url]

Just answer the few questions and you’re done. You can now go to the First use section.

Note: The –with-amavis option must be set only if you intend to use the Amavisd-new frontend.

In case you need a silent installation, e.g. if you’re using Salt-Stack. It’s possible to supply the database credentials
as commandline arguments.

Note: –dburl database-url for the modoboa database credentials –amavis_dburl database-url for the amavis database
credentials

Your database-url should meet the following syntax: scheme://[user:pass@][host:port]/dbname

or

2 Chapter 1. Getting started

http://mysql-python.sourceforge.net/
http://www.mysql.com
http://initd.org/psycopg/
http://www.postgresql.org

Modoboa Documentation, Release 1.1.0

sqlite:////full/path/to/your/database/file.sqlite

Available schemes are: * postgres * postgresql * postgis * mysql * mysql2 * sqlite

Note: If you plan to serve Modoboa using a URL prefix, you must change the value of the LOGIN_URL parameter
to LOGIN_URL = ’/<prefix>/accounts/login/’.

1.1.5 First use

Your installation should now have a default super administrator:

• Username: admin

• Password: password

It is strongly recommended to change this password the first time you log into Modoboa.

To check if your installation works, just launch the embedded HTTP server:

$ python manage.py runserver

You should be able to access Modoboa at http://localhost:8000/.

For a fully working interface using the embedded HTTP server, you need to set the DEBUG parameter in settings.py to
True.

For a production environment, we recommend using a stable webserver like Apache2 or Nginx. Don’t forget to set
DEBUG back to False.

1.2 Upgrading an existing installation

This section contains all the upgrade procedures required to use newest versions of Modoboa.

Note: Before running a migration, we recommend that you make a copy of your existing database.

1.2.1 Latest version

Warning: If you use a version prior to 0.9.5, please migrate in two steps:
1. first migrate to 0.9.5
2. then migrate to the latest version

If you try to migrate directly, the operation will fail.

Starting with version 0.9.1, Modoboa comes as a standard django application. Fetch the latest version (see Get Mod-
oboa) and install it.

pip users, just run the following command:

$ pip install --upgrade modoboa

1.2. Upgrading an existing installation 3

http://localhost:8000/

Modoboa Documentation, Release 1.1.0

Warning: If you migrate to 1.1.0, please follow the dedicated migration procedure and skip the usual one.

Then, refer to this page to check if the version you’re installing requires specific operations. If the version you’re
looking for is not present, it means nothing special is required.

Finally, follow the common procedure:

$ cd <modoboa_instance_dir>
$ python manage.py syncdb --migrate
$ python manage.py collectstatic

1.1.0: relay domains and better passwords encryption

Due to code refactoring, some modifications need to be done into settings.py:

1. MODOBOA_APPS must contain the following applications:

MODOBOA_APPS = (
’modoboa’,
’modoboa.core’,
’modoboa.lib’,

’modoboa.extensions.admin’,
’modoboa.extensions.limits’,
’modoboa.extensions.postfix_autoreply’,
’modoboa.extensions.webmail’,
’modoboa.extensions.stats’,
’modoboa.extensions.amavis’,
’modoboa.extensions.sievefilters’,

)

2. Add ’modoboa.extensions.postfix_relay_domains’ to MODOBOA_APPS, just before
’modoboa.extensions.limits’

3. AUTH_USER_MODEL must be set to core.User

4. Into LOGGING, replace modoboa.lib.logutils.SQLHandler by
modoboa.core.loggers.SQLHandler

Then, run the following commands to migrate your installation:

$ python manage.py syncdb
$ python manage.py migrate core 0001 --fake
$ python manage.py migrate
$ python manage.py collectstatic

Finally, update both Dovecot and Postfix queries.

1.0.1: operations on mailboxes

The way Modoboa handles rename and delete operations on mailboxes has been improved. Make sure to consult
Operations on the file system and Postfix configuration. Look at the smtpd_recipient_restrictions setting.

Run modoboa-admin.py postfix_maps --dbtype <mysql|postgres|sqlite> <tempdir> and
compare the files with those that postfix currently use. Make necessary updates in light of the differences

4 Chapter 1. Getting started

Modoboa Documentation, Release 1.1.0

1.0.0: production ready, at last

Configuration file update

Several modifications need to be done into settings.py.

1. Add the following import statement:

from logging.handlers import SysLogHandler

2. Set the ALLOWER_HOSTS variable:

ALLOWED_HOSTS = [
’<your server fqdn>’,

]

3. Activate the django.middleware.csrf.CsrfViewMiddleware middleware and add the
reversion.middleware.RevisionMiddleware middleware to MIDDLEWARE_CLASSES like
this:

MIDDLEWARE_CLASSES = (
’django.middleware.common.CommonMiddleware’,
’django.contrib.sessions.middleware.SessionMiddleware’,
’django.middleware.csrf.CsrfViewMiddleware’,
’django.contrib.auth.middleware.AuthenticationMiddleware’,
’django.contrib.messages.middleware.MessageMiddleware’,
’django.middleware.locale.LocaleMiddleware’,
Uncomment the next line for simple clickjacking protection:
’django.middleware.clickjacking.XFrameOptionsMiddleware’,
’reversion.middleware.RevisionMiddleware’,

’modoboa.lib.middleware.AjaxLoginRedirect’,
’modoboa.lib.middleware.CommonExceptionCatcher’,
’modoboa.lib.middleware.ExtControlMiddleware’,

)

4. Add the reversion application to INSTALLED_APPS

5. Remove all modoboa’s application from INSTALLED_APPS and put them into the new MODOBOA_APPS
variable like this:

INSTALLED_APPS = (
’django.contrib.auth’,
’django.contrib.contenttypes’,
’django.contrib.sessions’,
’django.contrib.sites’,
’django.contrib.messages’,
’django.contrib.staticfiles’,
’south’,
’reversion’,

)

A dedicated place to register Modoboa applications
Do not delete it.
Do not change the order.
MODOBOA_APPS = (

’modoboa’,
’modoboa.auth’,
’modoboa.admin’,

1.2. Upgrading an existing installation 5

Modoboa Documentation, Release 1.1.0

’modoboa.lib’,
’modoboa.userprefs’,

’modoboa.extensions.limits’,
’modoboa.extensions.postfix_autoreply’,
’modoboa.extensions.webmail’,
’modoboa.extensions.stats’,
’modoboa.extensions.amavis’,
’modoboa.extensions.sievefilters’,

)

INSTALLED_APPS += MODOBOA_APPS

6. Set the AUTH_USER_MODEL variable like this:

AUTH_USER_MODEL = ’admin.User’

7. Modify the logging configuration as follows:

LOGGING = {
’version’: 1,
’disable_existing_loggers’: False,
’filters’: {

’require_debug_false’: {
’()’: ’django.utils.log.RequireDebugFalse’

}
},
’formatters’: {

’syslog’: {
’format’: ’%(name)s: %(levelname)s %(message)s’

},
},
’handlers’: {

’mail_admins’: {
’level’: ’ERROR’,
’filters’: [’require_debug_false’],
’class’: ’django.utils.log.AdminEmailHandler’

},
’console’: {

logging handler that outputs log messages to terminal
’class’: ’logging.StreamHandler’,
#’level’: ’DEBUG’, # message level to be written to console

},
’syslog-auth’: {

’class’: ’logging.handlers.SysLogHandler’,
’facility’: SysLogHandler.LOG_AUTH,
’formatter’: ’syslog’

},
’modoboa’: {

’class’: ’modoboa.lib.logutils.SQLHandler’,
}

},
’loggers’: {

’django.request’: {
’handlers’: [’mail_admins’],
’level’: ’ERROR’,
’propagate’: True,

},
’modoboa.auth’: {

6 Chapter 1. Getting started

Modoboa Documentation, Release 1.1.0

’handlers’: [’syslog-auth’, ’modoboa’],
’level’: ’INFO’,
’propagate’: False

},
’modoboa.admin’: {

’handlers’: [’modoboa’],
’level’: ’INFO’,
’propagate’: False

}
}

}

Postfix and Dovecot configuration update

It is necessary to update the queries used to retrieve users and mailboxes:

1. Run modoboa-admin.py postfix_maps --dbtype <mysql|postgres> <tempdir> and
compare the files with those that postfix currently use. Make necessary updates in light of the differences

2. Into dovecot-sql.conf, update the user_query query, refer to MySQL users or PostgreSQL users

3. Update dovecot’s configuration to activate the new quota related features

Migration issues

When running the python manage.py syncdb --migrate command, you may encounter the following is-
sues:

1. Remove useless content types

If the script asks you this question, just reply no.

2. South fails to migrate reversion

Due to the admin user model change, the script 0001_initial.py may fail. Just deactivate reversion
from INSTALLED_APPS and run the command again. Once done, reactivate reversion and run the com-
mand one last time.

0.9.4: administrative panel performance improved

1. Edit the settings.py file and remove ’django.contrib.auth.backends.ModelBackend’ from
the AUTHENTICATION_BACKENDS variable

0.9.1: standard django application and more

For this version, we recommend to install a new instance (see Deployment) in a different directory.

Then, copy the following content from the old installation to the new one:

• The media directory

• The directory containing RRD files if you use the Graphical statistics plugin

Don’t copy the old settings.py file, just keep the new one and modify it (see Database and Time zone and
language).

Migrate your database (see Latest version).

1.2. Upgrading an existing installation 7

Modoboa Documentation, Release 1.1.0

Finally, check the Amavisd-new frontend, Postifx auto-reply messages and Graphical statistics chapters (depending on
those you use) because the provided cron scripts have been changed, you must update the way you call them.

1.2.2 Modoboa 0.9 and prior

First, decompress the new tarball at the same location than your current installation. Then, check if the new version
you’re installing requires a migration.

0.9: global UI refactoring, new limits extension and more

Note: This version requires at least django 1.3. Make sure to update your version before starting to migrate.

Note: Many files have been renamed/removed for this version. I recommend that you backup important files (set-
tings.py, etc.) elsewhere (ie. /tmp for example). Then, remove the modoboa directory, extract the new tarball at the
same place, rename the new directory to modoboa and copy the files you’ve just backup into it.

Note: If the first super administrator you created is named admin, its password will be changed to password at
the end of this upgrade. Don’t forget to modify it!

1. Edit the settings.py file and update the following variables (just copy/paste their new content):

MIDDLEWARE_CLASSES = (
’django.middleware.common.CommonMiddleware’,
’django.contrib.sessions.middleware.SessionMiddleware’,
’django.contrib.auth.middleware.AuthenticationMiddleware’,
’django.contrib.messages.middleware.MessageMiddleware’,
’django.middleware.locale.LocaleMiddleware’,
’modoboa.lib.middleware.AjaxLoginRedirect’,
’modoboa.lib.middleware.CommonExceptionCatcher’,
’modoboa.lib.middleware.ExtControlMiddleware’,

)

AUTHENTICATION_BACKENDS = (
’modoboa.lib.authbackends.SimpleBackend’,
’django.contrib.auth.backends.ModelBackend’,

)

2. Add django.contrib.staticfiles to INSTALLED_APPS

3. Add the following new variables:

STATIC_ROOT = os.path.join(MODOBOA_DIR, ’sitestatic’)
STATIC_URL = ’/sitestatic/’

4. Update the following variables (just copy/paste their new values):

MEDIA_ROOT = os.path.join(MODOBOA_DIR, ’media’)
MEDIA_URL = ’/media/’

5. For MySQL users only, add the following option to your database configuration:

8 Chapter 1. Getting started

Modoboa Documentation, Release 1.1.0

DATABASES = {
"default" : {

...
MySQL users only
"OPTIONS" : {

"init_command" : "SET foreign_key_checks = 0;",
},

}
}

6. Add ’modoboa.extensions.limits’ to INSTALLED_APPS

7. Update your database (make sure to create a backup before launching the following command):

$./manage.py syncdb --migrate

8. Run the following command to initialize the directory that contains static files:

$./manage.py collectstatic

9. If you are using the stats extension, please rename the <modoboa_dir>/static/stats directory to
<modoboa_dir>/media/stats and change the value of the IMG_ROOTDIR parameter (go to the ad-
minstration panel)

10. Restart the python instance(s) that serve Modoboa

11. Log into Modoboa, go to Modoboa > Extensions, uncheck all extensions, save. Then, check the extensions you
want to use and save again

12. Update your webserver configuration to make static files available (see Web servers)

13. For Dovecot users only, you need to modify the password_query (file
/etc/dovecot/dovecot-sql.conf by default on a Debian system) like this:

password_query = SELECT email AS user, password FROM auth_user WHERE email=’%u’

0.8.8: CSV import feature and minor fixes

1. Edit the settings.py file and add ’modoboa.lib.middleware.AjaxLoginRedirect’ to the
MIDDLEWARE_CLASSES variable like this:

MIDDLEWARE_CLASSES = (
’django.middleware.common.CommonMiddleware’,
’django.contrib.sessions.middleware.SessionMiddleware’,
’django.contrib.auth.middleware.AuthenticationMiddleware’,
’django.contrib.messages.middleware.MessageMiddleware’,
’django.middleware.locale.LocaleMiddleware’,
’modoboa.lib.middleware.AjaxLoginRedirect’,
’modoboa.lib.middleware.ExtControlMiddleware’,
’modoboa.extensions.webmail.middleware.WebmailErrorMiddleware’,

)

2. Still inside settings.py, modify the DATABASE_ROUTERS variable like this:

DATABASE_ROUTERS = ["modoboa.extensions.amavis_quarantine.dbrouter.AmavisRouter"]

1.2. Upgrading an existing installation 9

Modoboa Documentation, Release 1.1.0

0.8.7: per-user language selection

1. Edit the settings.py file and add the ’django.middleware.locale.LocaleMiddleware’ mid-
dleware to the MIDDLEWARE_CLASSES variable like this:

MIDDLEWARE_CLASSES = (
’django.middleware.common.CommonMiddleware’,
’django.contrib.sessions.middleware.SessionMiddleware’,
’django.contrib.auth.middleware.AuthenticationMiddleware’,
’django.contrib.messages.middleware.MessageMiddleware’,
’django.middleware.locale.LocaleMiddleware’,
’modoboa.lib.middleware.ExtControlMiddleware’,
’modoboa.extensions.webmail.middleware.WebmailErrorMiddleware’,

)

2. To select a custom language, go to Options > Preferences and select the general section. Choose a value,
save and disconnect from Modoboa. On the next login, the desired language will be used.

0.8.6.1: maintenance release

1. If you have tried to create a new mailbox and if you have encountered the following issue, you must run the
dbcleanup.py script in order to remove orphan records:

$ cd <modoboa_dir>
$ PYTHONPATH=$PWD/.. DJANGO_SETTINGS_MODULE=modoboa.settings ./admin/scripts/dbcleanup.py

0.8.6: Quarantine plugin refactoring (using Django’s ORM)

1. Just update your configuration if you are using the quarantine plugin. Open settings.py, move the database
configuration from the DB_CONNECTIONS variable to the DATABASES variable, like this:

DATABASES = {
"default" : {

The default database configuration
},
...
"amavis": {

"ENGINE" : "<your value>",
"HOST" : "<your value>",
"NAME" : "<your value>",
"USER" : "<your value>",
"PASSWORD" : "<your value>"

}
}

2. Add the new following variable somewhere in the file:

DATABASE_ROUTERS = ["modoboa.extensions.amavis_quarantine.dbrouter.AmavisRouter"]

3. Remove the deprecated DB_CONNECTIONS variable from settings.py.

0.8.5: new “Sieve filters” plugin, improved admin app

1. Migrate the lib and admin applications:

10 Chapter 1. Getting started

http://dev.modoboa.org/ticket/163

Modoboa Documentation, Release 1.1.0

$ python manage.py migrate lib
$ python manage.py migrate admin

2. Add modoboa.auth and modoboa.extensions.sievefilters to the INSTALLED_APPS variable
in settings.py.

3. Go the Settings/Extensions panel, deactivate and activate your extensions, it will update all the symbolic links.

0.8.4: folders manipulation support (webmail) and bugfixes

1. Update the MIDDLEWARE_CLASSES variable in settings.py:

MIDDLEWARE_CLASSES = (
’django.middleware.common.CommonMiddleware’,
’django.contrib.sessions.middleware.SessionMiddleware’,
’django.contrib.auth.middleware.AuthenticationMiddleware’,
’django.contrib.messages.middleware.MessageMiddleware’,
’modoboa.lib.middleware.ExtControlMiddleware’,
’modoboa.extensions.webmail.middleware.WebmailErrorMiddleware’,

)

2. Go the Settings/Extensions panel, deactivate and activate your extensions, it will update all the symbolic links
to the new format.

3. Optional: update the DATABASES and TEMPLATE_LOADERS variables in settings.py to remove warning
messages (appearing with Django 1.3):

DATABASES = {
"default" : {

"ENGINE" : "<your engine>",
"NAME" : "modoboa",
"USER" : "<your user>",
"PASSWORD" : "<your password>",
"HOST" : "",
"PORT" : ""

}
}

TEMPLATE_LOADERS = (
’django.template.loaders.filesystem.Loader’,
’django.template.loaders.app_directories.Loader’,

)

0.8.3: admin application refactoring and more

1. Migrate the admin application:

$ python manage.py migrate admin

2. Update SQL queries used in your environnement (see Postfix or Dovecot).

3. Update Postfix configuration so that it can handle domain aliases (see Postfix).

0.8.2: ckeditor integration and more

1. Migrate the admin applicaton:

1.2. Upgrading an existing installation 11

Modoboa Documentation, Release 1.1.0

$ python manage.py migrate admin

2. Update your config file and add all extensions to INSTALLED_APPS (even those you are not going to use).

3. Inside the <modoboa_dir>/templates/ directory, remove all symbolic links.

4. Download the latest release of ckeditor and extract it into <modoboa_dir>/static/js/. It should create
a new directory named ckeditor.

5. Update the following variables inside settings.py:

MEDIA_ROOT = os.path.join(MODOBOA_DIR, ’static’)
MEDIA_URL = ’/static/’

6. Then, add the following variable: MODOBOA_WEBPATH = ’modoboa/’

7. Delete the following variables: STATIC_ROOTDIR and TEMPLATE_CONTEXT_PROCESSORS.

8. Finally, add modoboa.lib.middleware.ExtControlMiddleware to MIDDLEWARE_CLASSES.

0.8.1 : project renamed

1. First, rename the mailng directory to modoboa and copy all the content from modoboa-0.8.1 to
modoboa.

2. Edit settings.py and replace all occurences of mailng by modoboa. Make sure you don’t modify the
DATABASE section as you’re not going to rename your database.

3. Rename the MAILNG_DIR variable to MODOBOA_DIR.

4. Add ’django.contrib.messages.middleware.MessageMiddleware’ to
MIDDLEWARE_CLASSES and ’django.contrib.messages’ to INSTALLED_APPS. Save your
modifications.

5. Run the following command:

$ python manage.py syncdb

6. For all activated extensions, run the following command:

$ export PYTHONPATH=<modoboa_dir>/..=
$ DJANGO_SETTINGS_MODULE=modoboa.settings <modoboa_dir>/scripts/extension.py <extension> on

7. Update your webserver configuration and restart it.

0.8 : SQL migration needed

Before you start the migration, make sure you have updated your INSTALLED_APPS variable and that it contains at
least:

INSTALLED_APPS = (
Django’s stuff before

’south’,
’mailng’,
’mailng.lib’,
’mailng.admin’,
’mailng.userprefs’,

)

12 Chapter 1. Getting started

Modoboa Documentation, Release 1.1.0

Starting with 0.8, mailng.main doesn’t exist anymore. You must remove it from your INSTALLED_APPS.

Finally, run the following commands:

$ python manage.py syncdb
$ python manage.py convert_to_south
$ python manage.py migrate --all 0001 --fake
$ python manage.py migrate --all 0002

1.3 Configuration

1.3.1 Online parameters

Modoboa provides online panels to modify internal parameters. There are two available levels:

• Application level: global parameters, define how the application behaves. Available at Modoboa > Parameters

• User level: per user customization. Available at User > Settings > Preferences

Regardless level, parameters are displayed using tabs, each tab corresponding to one application.

General parameters

The admin application exposes several parameters, they are presented below:

Name Description Default
value

Authentication type The backend used for authentication Local
Default password
scheme

Scheme used to crypt mailbox passwords crypt

Secret key A key used to encrypt users’ password in sessions random
value

Handle mailboxes on
filesystem

Rename or remove mailboxes on the filesystem when they get renamed
or removed within Modoboa

no

Mailboxes owner The UNIX account who owns mailboxes on the filesystem vmail
Automatic account
removal

When a mailbox is removed, also remove the associated account no

Maximum log record
age

The maximum age in days of a log record 365

Items per page Number of displayed items per page 30
Default top redirection The default redirection used when no application is specified userprefs

Note: A random secret key will be generated each time the Parameters page is refreshed and until you save parameters
at least once.

Note: Specific LDAP parameters are also available, see LDAP authentication.

1.3. Configuration 13

Modoboa Documentation, Release 1.1.0

1.3.2 Customization

Custom logo

You have the possibility to use a custom logo instead of the default one on the login page.

To do so, open the settings.py file and add a MODOBOA_CUSTOM_LOGO variable. This variable must contain
the relative URL of your logo under MEDIA_URL. For example:

MODOBOA_CUSTOM_LOGO = os.path.join(MEDIA_URL, "custom_logo.png")

Then copy your logo file into the directory indicated by MEDIA_ROOT.

1.3.3 Host configuration

Note: This section is only relevant when Modoboa handles mailboxes renaming and removal from the filesystem.

To manipulate mailboxes on the filesystem, you must allow the user who runs Modoboa to execute commands as the
user who owns mailboxes.

To do so, edit the /etc/sudoers file and add the following inside:

<user_that_runs_modoboa> ALL=(<mailboxes owner>) NOPASSWD: ALL

Replace values between <> by the ones you use.

1.3.4 Time zone and language

Modoboa is available in many languages.

To specify the default language to use, edit the settings.py file and modify the LANGUAGE_CODE variable:

LANGUAGE_CODE = ’fr’ # or ’en’ for english, etc.

Note: Each user has the possibility to define the language he prefers.

In the same configuration file, specify the timezone to use by modifying the TIME_ZONE variable. For example:

TIME_ZONE = ’Europe/Paris’

1.3.5 Sessions management

Modoboa uses Django’s session framework to store per-user information.

Few parameters need to be set in the settings.py configuration file to make Modoboa behave as expected:

SESSION_EXPIRE_AT_BROWSER_CLOSE = False # Default value

This parameter is optional but you must ensure it is set to False (the default value).

The default configuration file provided by the modoboa-admin.py command is properly configured.

14 Chapter 1. Getting started

https://docs.djangoproject.com/en/dev/topics/http/sessions/?from=olddocs

Modoboa Documentation, Release 1.1.0

1.3.6 LDAP

Authentication

Modoboa supports external LDAP authentication using the following extra components:

• Python LDAP client

• Django LDAP authentication backend

If you want to use this feature, you must first install those components:

$ pip install python-ldap django-auth-ldap

Then, all you have to do is to modify the settings.py file. Add a new authentication backend to the AUTHENTI-
CATION_BACKENDS variable, like this:

AUTHENTICATION_BACKENDS = (
’modoboa.lib.authbackends.LDAPBackend’,
’modoboa.lib.authbackends.SimpleBackend’,

)

Finally, go to Modoboa > Parameters > General and set Authentication type to LDAP.

From there, new parameters will appear to let you configure the way Modoboa should connect to your LDAP server.
They are described just below:

Name Description Default
value

Server address The IP address of the DNS name of the LDAP server localhost
Server port The TCP port number used by the LDAP server 389
Use a secure
connection

Use an SSL/TLS connection to access the LDAP server no

Authentication method Choose the authentication method to use Direct
bind

User DN template
(direct bind mode)

The template used to construct a user’s DN. It should contain one
placeholder (ie. %(user)s)

Bind BN The distinguished name to use when binding to the LDAP server. Leave
empty for an anonymous bind

Bind password The password to use when binding to the LDAP server (with ‘Bind DN’)
Search base The distinguished name of the search base
Search filter An optional filter string (e.g. ‘(objectClass=person)’). In order to be valid,

it must be enclosed in parentheses.
(mail=%(user)s)

Password attribute The attribute used to store user passwords userPass-
word

Active Directory Tell if the LDAP server is an Active Directory one no
Administrator groups Members of those LDAP Posix groups will be created ad domain

administrators. Use ‘;’ characters to separate groups.
Groups search base The distinguished name of the search base used to find groups

If you need additional parameters, you will find a detailled documentation here.

Once the authentication is properly configured, the users defined in your LDAP directory will be able to connect to
Modoboa, the associated domain and mailboxes will be automatically created if needed.

The first time a user connects to Modoboa, a local account is created if the LDAP username is a valid email address.
By default, this account belongs to the SimpleUsers group and it has a mailbox.

1.3. Configuration 15

http://www.python-ldap.org/
http://pypi.python.org/pypi/django-auth-ldap
http://packages.python.org/django-auth-ldap/

Modoboa Documentation, Release 1.1.0

To automatically create domain administrators, you can use the Administrator groups setting. If a LDAP user belongs
to one the listed groups, its local account will belong to the DomainAdmins group. In this case, the username is not
necessarily an email address.

Users will also be able to update their LDAP password directly from Modoboa.

Note: Modoboa doesn’t provide any synchronization mechanism once a user is registered into the database. Any
modification done from the directory to a user account will not be reported to Modoboa (an email address change for
example). Currently, the only solution is to manually delete the Modoboa record, it will be recreated on the next user
login.

1.3.7 Database maintenance

Cleaning the logs table

Modoboa logs administrator specific actions into the database. A clean-up script is provided to automatically remove
oldest records. The maximum log record age can be configured through the online panel.

To use it, you can setup a cron job to run every night:

0 0 * * * <modoboa_site>/manage.py cleanlogs

Cleaning the session table

Django does not provide automatic purging. Therefore, it’s your job to purge expired sessions on a regular basis.

Django provides a sample clean-up script: django-admin.py cleanup. That script deletes any session in the
session table whose expire_date is in the past.

For example, you could setup a cron job to run this script every night:

0 0 * * * <modoboa_site>/manage.py cleanup

1.4 Using plugins

1.4.1 Enable or disable a plugin

Modoboa provides an online panel to control plugins activation. You will find it at Modoboa > Extensions.

To activate a plugin, check the corresponding box and click on the Apply button.

To deactivate a plugin, uncheck the corresponding box and click on the Apply button.

1.4.2 Per-admin limits

This plugin offers a way to define limits about how many objects (aliases, mailboxes) a domain administrator can
create.

It also brings a new administrative role: Reseller. A reseller is a domain administrator that can also manipulate
domains and assign permissions to domain administrators.

If you don’t want to limit a particular object type, just set the associated value to -1.

16 Chapter 1. Getting started

Modoboa Documentation, Release 1.1.0

Default limits applied to new administrators can be changed through the Modoboa > Parameters > Limits page.

1.4.3 Postfix relay domains support

This plugin adds the support for relay domains using postfix. You can use it when the MTA managed by Modoboa is
not the final destination of one or several domains.

If activated, two new objects will be available from the Domains listing page: relay domain and relay domain alias.

The extension is compatible with the amavis and limits ones. Resellers will be able to create both new objects.

Replace <driver> by the name of the database you use.To tell Postfix this feature exists, you must generate two new
map files and then update your configuration.

To generate the map files, run the following command:

$ modoboa-admin.py postfix_maps --categories relaydomains --dbtype <the database you use> <path>

Replace values between <> by yours.

Edit the /etc/postfix/main.cf file and copy the following lines inside:

relay_domains = <driver>:/etc/postfix/maps/sql-relaydomains.cf
transport_maps =

<driver>:/etc/postfix/maps/sql-relaydomains-transport.cf
<driver>:/etc/postfix/maps/sql-relaydomain-aliases-transport.cf

smtpd_recipient_restrictions =
permit_mynetworks
reject_unauth_destination
check_recipient_access

<driver>:/etc/postfix/maps/sql-relay-recipient-verification.cf

Replace <driver> by the name of the database you use.

Reload postfix.

1.4.4 Amavisd-new frontend

This plugin provides a simple management frontend for amavisd-new. The supported features are:

• SQL quarantine management : available to administrators or users, possibility to delete or release messages

• Per domain customization (using policies): specify how amavisd-new will handle traffic

Note: The per-domain policies feature only works for new installations. Currently, you can’t use modoboa with an
existing database (ie. with data in users and policies tables).

Note: This plugin requires amavisd-new version 2.7.0 or higher. If you’re planning to use the Self-service mode,
you’ll need version 2.8.0.

Database

You must tell to Modoboa where it can find the amavis database. Inside settings.py, add a new connection to the
DATABASES variable like this:

1.4. Using plugins 17

http://www.amavis.org

Modoboa Documentation, Release 1.1.0

DATABASES = {
Stuff before
#
"amavis": {
"ENGINE" : "<your value>",
"HOST" : "<your value>",
"NAME" : "<your value>",
"USER" : "<your value>",
"PASSWORD" : "<your value>"

}
}

Replace values between <> with yours.

Note: Modoboa doesn’t create amavis tables. You need to install them following the official documentation.

Cleanup

Storing quarantined messages to a database can quickly become a perfomance killer. Modoboa provides a simple
script to periodically purge the quarantine database. To use it, add the following line inside root’s crontab:

0 0 * * * <modoboa_site>/manage.py qcleanup

Replace modoboa_site with the path of your Modoboa instance.

By default, messages older than 14 days are automatically purged. You can modify this value by changing the
MAX_MESSAGES_AGE parameter in the online panel.

Release messages

To release messages, first take a look at this page. It explains how to configure amavisd-new to listen somewhere for
the AM.PDP protocol. This protocol is used to send requests.

Below is an example of a working configuration:

$interface_policy{’SOCK’} = ’AM.PDP-SOCK’;
$interface_policy{’9998’} = ’AM.PDP-INET’;

$policy_bank{’AM.PDP-SOCK’} = {
protocol => ’AM.PDP’,
auth_required_release => 0,

};
$policy_bank{’AM.PDP-INET’} = {

protocol => ’AM.PDP’,
inet_acl => [qw(127.0.0.1 [::1])],

};

Don’t forget to update the inet_acl list if you plan to release from the network.

Once amavisd-new is configured, just tell Modoboa where it can find the release server by modifying the following
parameters in the online panel:

18 Chapter 1. Getting started

http://www.amavis.org/#doc
http://www.ijs.si/software/amavisd/amavisd-new-docs.html#quar-release

Modoboa Documentation, Release 1.1.0

Name Description Default value
Amavis connection mode Mode used to access the PDP server unix
PDP server address PDP server address (if inet mode) localhost
PDP server port PDP server port (if inet mode) 9998
PDP server socket Path to the PDP server socket (if unix mode) /var/amavis/amavisd.sock

Deferred release

By default, simple users are not allowed to release messages themselves. They are only allowed to send release
requests to administrators.

As administrators are not always available or logged into Modoboa, a notification tool is available. It sends reminder
e-mails to every administrators or domain administrators. To use it, add the following example line to root’s crontab:

0 12 * * * <modoboa_site>/manage.py amnotify --baseurl=’<modoboa_url>’

You are free to change the frequency.

Note: If you want to let users release their messages alone (not recommended), go to the admin panel.

The following parameters are available to let you customize this feature:

Name Description Default value
Check requests interval Interval between two release requests checks 30
Allow direct release Allow users to directly release their messages no
Notifications sender The e-mail address used to send notitications notification@modoboa.org

Self-service mode

The self-service mode let users act on quarantined messages without beeing authenticated. They can:

• View messages

• Remove messages

• Release messages (or send release requests)

To access a specific message, they only need the following information:

• Message’s unique identifier

• Message’s secret identifier

This information is controlled by amavis, which is in charge of notifying users when new messages are put into
quarantine. Each notification (one per message) must embark a direct link containing the required identifiers.

To activate this feature, go the administration panel and set the Enable self-service mode parameter to yes.

The last step is to customize the notification messages amavis sends. The most important is to embark a direct link.
Take a look at the README.customize file to learn what you’re allowed to do.

Here is a link example:

http://<modoboa_url>/quarantine/%i/?rcpt=%R&secret_id=[:secret_id]

1.4. Using plugins 19

mailto:notification@modoboa.org
http://amavis.org/README.customize.txt

Modoboa Documentation, Release 1.1.0

1.4.5 Graphical statistics

This plugin collects various statistics about emails traffic on your server. It parses a log file to collect information,
store it into RRD files (see rrdtool) and then generates graphics in PNG format.

To use it, go to the online parameters panel and adapt the following ones to your environnement:

Name Description Default value
Path to the log file Path to log file used to collect statistics /var/log/mail.log
Directory to store RRD files Path to directory where RRD files are stored /tmp/modoboa
Directory to store PNG files Path to directory where PNG files are stored <modoboa_site>/media/stats

Make sure the directory that will contain RRD files exists. If not, create it before going further. For example (according
to the previous parameters):

$ mkdir /tmp/modoboa

To finish, you need to collect information periodically in order to feed the RRD files. Add the following line into root’s
crontab:

*/5 * * * * <modoboa_site>/manage.py logparser &> /dev/null

Replace <modoboa_site> with the path of your Modoboa instance.

Graphics will be automatically created after each parsing.

1.4.6 Postifx auto-reply messages

This plugin let users define an auto-reply message (vacation). It is based on Postfix capabilities.

The user that executes the autoreply script needs to access settings.py. You must apply proper permissions on
this file. For example, if settings.py belongs to www-data:www-data, you can add the vmail user to the
www-data group and set the read permission for the group.

To make Postfix use this feature, you need to update your configuration files as follows:

/etc/postfix/main.cf:

transport_maps = mysql:/etc/postfix/maps/sql-autoreplies-transport.cf
virtual_alias_maps = <driver>:/etc/postfix/maps/sql-aliases.cf

<driver>:/etc/postfix/mapfiles/sql-domain-aliases-mailboxes.cf,
<driver>:/etc/postfix/maps/sql-autoreplies.cf,
<driver>:/etc/postfix/mapfiles/sql-catchall-aliases.cf

Note: The order used to define alias maps is important, please respect it

/etc/postfix/master.cf:

autoreply unix - n n - - pipe
flags= user=vmail:<group> argv=<modoboa_site>/manage.py autoreply $sender $mailbox

Replace <driver> by the name of the database you use. <modoboa_site> is the path of your Modoboa instance.

Then, create the requested map files:

$ modoboa-admin.py postfix_maps mapfiles --categories autoreply

mapfiles is the directory where the files will be stored. Answer the few questions and you’re done.

20 Chapter 1. Getting started

http://oss.oetiker.ch/rrdtool/

Modoboa Documentation, Release 1.1.0

Note: Auto-reply messages are just sent one time per sender for a pre-defined time period. By default, this period is
equal to 1 day (86400s), you can adjust this value by modifying the Automatic reply timeout parameter available in
the online panel.

1.4.7 Sieve filters

This plugin let users create server-side message filters, using the sievelib module (which provides Sieve and Manage-
Sieve clients).

Two working modes are available:

• A raw mode: you create filters using the Sieve language directly (advanced users)

• An assisted mode: you create filters using an intuitive form

To use this plugin, your hosting setup must include a ManageSieve server and your local delivery agent must un-
derstand the Sieve language. Don’t panic, Dovecot supports both :-) (refer to Dovecot to know how to enable those
features).

Note: The sieve filters plugin requires that the Webmail plugin is activated and configured.

Go the online panel and modify the following parameters in order to communicate with the ManageSieve server:

Name Description Default value
Server address Address of your MANAGESIEVE server 127.0.0.1
Server port Listening port of your MANAGESIEVE server 4190
Connect using STARTTLS Use the STARTTLS extension no
Authentication mechanism Prefered authentication mechanism auto

1.4.8 Webmail

Modoboa provides a simple webmail:

• Browse, read and compose messages, attachments are supported

• HTML messages are supported

• CKeditor integration

• Manipulate mailboxes (create, move, remove)

• Quota display

To use it, go to the online panel and modify the following parameters to communicate with your IMAP server (under
IMAP settings):

Name Description Default value
Server address Address of your IMAP server 127.0.0.1
Use a secured connection Use a secured connection to access IMAP server no
Server port Listening port of your IMAP server 143

Do the same to communicate with your SMTP server (under SMTP settings):

Name Description Default value
Server address Address of your SMTP server 127.0.0.1
Secured connection mode Use a secured connection to access SMTP server None
Server port Listening port of your SMTP server 25
Authentication required Server needs authentication no

1.4. Using plugins 21

http://pypi.python.org/pypi/sievelib
http://ckeditor.com/

Modoboa Documentation, Release 1.1.0

Note: The size of each attachment sent with messages is limited. You can change the default value by modifying the
Maximum attachment size parameter.

Using CKeditor

Modoboa supports CKeditor to compose HTML messages. To use it, first download it from the official website, then
extract the tarball:

$ cd <modoboa_site_dir>
$ tar xzf /path/to/ckeditor/tarball.tag.gz -C sitestatic/js/

And you’re done!

Now, each user has the possibility to choose between CKeditor and the raw text editor to compose their messages. (see
User > Settings > Preferences > Webmail)

22 Chapter 1. Getting started

http://ckeditor.com/

CHAPTER 2

Integration with other softwares

2.1 Dovecot and Postfix

2.1.1 Dovecot

Modoboa works better with Dovecot 2.0 so the following documentation is suitable for this combination.

In this section, we assume dovecot’s configuration resides in /etc/dovecot, all pathes will be relative to this
directory.

Mailboxes

First, edit the conf.d/10-mail.conf and set the mail_location variable:

maildir
mail_location = maildir:~/.maildir

Then, edit the inbox namespace and add the following lines:

inbox = yes

mailbox Drafts {
auto = create
special_use = \Drafts

}
mailbox Junk {

auto = create
special_use = \Junk

}
mailbox Sent {

auto = create
special_use = \Sent

}
mailbox Trash {

auto = create
special_use = \Trash

}

23

Modoboa Documentation, Release 1.1.0

With dovecot 2.1+, it ensures all the special mailboxes will be automaticaly created for new accounts.

For dovecot 2.0 and older, use the autocreate plugin.

Operations on the file system

Three operation types are considered:

1. Mailbox creation

2. Mailbox renaming

3. Mailbox deletion

The first one is managed by Dovecot. The last two ones may be managed by Modoboa if it can access the file system
where the mailboxes are stored (see General parameters to activate this feature).

Those operations are treated asynchronously by a cron script. For example, when you rename an e-mail address
through the web UI, the associated mailbox on the file system is not modified directly. Instead of that, a rename order
is created for this mailbox. The mailbox will be considered unavailable until the order is not executed (see Postfix
configuration).

Edit the crontab of the user who owns the mailboxes on the file system:

$ crontab -u <user> -e

And add the following line inside:

* * * * * python <modoboa_site>/manage.py handle_mailbox_operations

Warning: The cron script must be executed by the system user owning the mailboxes.

Warning: The user running the cron script must have access to the settings.py file of the modoboa instance.

The result of each order is recorded into Modoboa’s log. Go to Modoboa > Logs to consult them.

Authentication

To make the authentication work, edit the conf.d/10-auth.conf and uncomment the following line at the end:

#!include auth-system.conf.ext
!include auth-sql.conf.ext
#!include auth-ldap.conf.ext
#!include auth-passwdfile.conf.ext
#!include auth-checkpassword.conf.ext
#!include auth-vpopmail.conf.ext
#!include auth-static.conf.ext

Then, edit the conf.d/auth-sql.conf.ext file and add the following content inside:

passdb sql {
driver = sql
Path for SQL configuration file, see example-config/dovecot-sql.conf.ext
args = /etc/dovecot/dovecot-sql.conf.ext

}

userdb sql {

24 Chapter 2. Integration with other softwares

http://wiki2.dovecot.org/Plugins/Autocreate

Modoboa Documentation, Release 1.1.0

driver = sql
args = /etc/dovecot/dovecot-sql.conf.ext

}

Make sure to activate only one backend (per type) inside your configuration (just comment the other ones).

Edit the dovecot-sql.conf.ext and modify the configuration according to your database engine.

MySQL users

driver = mysql

connect = host=<mysqld socket> dbname=<database> user=<user> password=<password>

default_pass_scheme = CRYPT

password_query = SELECT email AS user, password FROM core_user WHERE email=’%u’ and is_active=1

user_query = SELECT ’<mailboxes storage directory>/%d/%n’ AS home, <uid> as uid, <gid> as gid, concat(’*:bytes=’, mb.quota, ’M’) AS quota_rule FROM admin_mailbox mb INNER JOIN admin_domain dom ON mb.domain_id=dom.id WHERE mb.address=’%n’ AND dom.name=’%d’

iterate_query = SELECT email AS username FROM core_user

PostgreSQL users

driver = pgsql

connect = host=<postgres socket> dbname=<database> user=<user> password=<password>

default_pass_scheme = CRYPT

password_query = SELECT email AS user, password FROM core_user WHERE email=’%u’ and is_active

user_query = SELECT ’<mailboxes storage directory>/%d/%n’ AS home, <uid> as uid, <gid> as gid, ’*:bytes=’ || mb.quota || ’M’ AS quota_rule FROM admin_mailbox mb INNER JOIN admin_domain dom ON mb.domain_id=dom.id WHERE mb.address=’%n’ AND dom.name=’%d’

iterate_query = SELECT email AS username FROM core_user

SQLite users

driver = sqlite

connect = <path to the sqlite db file>

default_pass_scheme = CRYPT

password_query = SELECT email AS user, password FROM core_user WHERE email=’%u’ and is_active=1

user_query = SELECT ’<mailboxes storage directory>/%d/%n’ AS home, <uid> as uid, <gid> as gid, (’*:bytes=’ || mb.quota || ’M’) AS quota_rule FROM admin_mailbox mb INNER JOIN admin_domain dom ON mb.domain_id=dom.id WHERE mb.address=’%n’ AND dom.name=’%d’

iterate_query = SELECT email AS username FROM core_user

Note: Replace values between <> with yours.

2.1. Dovecot and Postfix 25

Modoboa Documentation, Release 1.1.0

LDA

The LDA is activated by default but you must define a postmaster address. Open the conf.d/15-lda.conf file
modify the following line:

postmaster_address = postmaster@<domain>

Quota

Modoboa lets adminstrators define per-domain and/or per-account limits (quota). It also lists the current quota usage
of each account. Those features require Dovecot to be configured in a specific way.

Inside conf.d/10-mail.conf, add the quota plugin to the default activated ones:

mail_plugins = quota

Inside conf.d/10-master.conf, update the dict service to set proper permissions:

service dict {
If dict proxy is used, mail processes should have access to its socket.
For example: mode=0660, group=vmail and global mail_access_groups=vmail
unix_listener dict {
mode = 0600
user = <user owning mailboxes>
#group =

}
}

Inside conf.d/20-imap.conf, activate the imap_quota plugin:

protocol imap {
...

mail_plugins = $mail_plugins imap_quota

...
}

Inside dovecot.conf, activate the quota SQL dictionary backend:

dict {
quota = <driver>:/etc/dovecot/dovecot-dict-sql.conf.ext

}

Inside conf.d/90-quota.conf, activate the quota dictionary backend:

plugin {
quota = dict:User quota::proxy::quota

}

It will tell Dovecot to keep quota usage in the SQL dictionary.

Finally, edit the dovecot-dict-sql.conf.ext file and put the following content inside:

connect = host=<db host> dbname=<db name> user=<db user> password=<password>
SQLite users
connect = /path/to/the/database.db

map {
pattern = priv/quota/storage

26 Chapter 2. Integration with other softwares

Modoboa Documentation, Release 1.1.0

table = admin_quota
username_field = username
value_field = bytes

}
map {

pattern = priv/quota/messages
table = admin_quota
username_field = username
value_field = messages

}

PostgreSQL users

Database schema update The admin_quota table is created by Django but unfortunately it doesn’t support
DEFAULT constraints (it only simulates them when the ORM is used). As PostgreSQL is a bit strict about constraint
violations, you must execute the following query manually:

db=> ALTER TABLE admin_quota ALTER COLUMN bytes SET DEFAULT 0;
db=> ALTER TABLE admin_quota ALTER COLUMN messages SET DEFAULT 0;

Trigger As indicated on Dovecot’s wiki, you need a trigger to properly update the quota. Unfortunately, the provided
example won’t work for Modoboa. You should use the following one instead:

CREATE OR REPLACE FUNCTION merge_quota() RETURNS TRIGGER AS $$
BEGIN

IF NEW.messages < 0 OR NEW.messages IS NULL THEN
-- ugly kludge: we came here from this function, really do try to insert
IF NEW.messages IS NULL THEN

NEW.messages = 0;
ELSE

NEW.messages = -NEW.messages;
END IF;
return NEW;

END IF;

LOOP
UPDATE admin_quota SET bytes = bytes + NEW.bytes,

messages = messages + NEW.messages
WHERE username = NEW.username;

IF found THEN
RETURN NULL;

END IF;

BEGIN
IF NEW.messages = 0 THEN

RETURN NEW;
ELSE

NEW.messages = - NEW.messages;
return NEW;

END IF;
EXCEPTION WHEN unique_violation THEN

-- someone just inserted the record, update it
END;

END LOOP;
END;
$$ LANGUAGE plpgsql;

2.1. Dovecot and Postfix 27

http://wiki2.dovecot.org/Quota/Dict

Modoboa Documentation, Release 1.1.0

CREATE OR REPLACE FUNCTION set_mboxid() RETURNS TRIGGER AS $$
DECLARE

mboxid INTEGER;
BEGIN

SELECT admin_mailbox.id INTO STRICT mboxid FROM admin_mailbox INNER JOIN core_user ON admin_mailbox.user_id=core_user.id WHERE core_user.username=NEW.username;
UPDATE admin_quota SET mbox_id = mboxid
WHERE username = NEW.username;

RETURN NULL;
END;
$$ LANGUAGE plpgsql;

DROP TRIGGER IF EXISTS mergequota ON admin_quota;
CREATE TRIGGER mergequota BEFORE INSERT ON admin_quota

FOR EACH ROW EXECUTE PROCEDURE merge_quota();

DROP TRIGGER IF EXISTS setmboxid ON admin_quota;
CREATE TRIGGER setmboxid AFTER INSERT ON admin_quota

FOR EACH ROW EXECUTE PROCEDURE set_mboxid();

Copy this example into a file (for example: quota-trigger.sql) on server running postgres and execute the
following commands:

$ su - postgres
$ psql < /path/to/quota-trigger.sql
$ exit

Forcing recalculation

For existing installations, Dovecot (> 2) offers a command to recalculate the current quota usages. For example, if you
want to update all usages, run the following command:

$ doveadm quota recalc -A

Be carefull, it can take a while to execute.

ManageSieve/Sieve

Modoboa lets users define filtering rules from the web interface. To do so, it requires ManageSieve to be activated on
your server.

Inside conf.d/20-managesieve.conf, make sure the following lines are uncommented:

protocols = $protocols sieve

service managesieve-login {
...

}

service managesieve {
...

}

protocol sieve {
...

}

28 Chapter 2. Integration with other softwares

Modoboa Documentation, Release 1.1.0

Messages filtering using Sieve is done by the LDA.

Inside conf.d/15-lda.conf, activate the sieve plugin like this:

protocol lda {
Space separated list of plugins to load (default is global mail_plugins).
mail_plugins = $mail_plugins sieve

}

Finally, configure the sieve plugin by editing the conf.d/90-sieve.conf file. Put the follwing caontent inside:

plugin {
Location of the active script. When ManageSieve is used this is actually
a symlink pointing to the active script in the sieve storage directory.
sieve = ~/.dovecot.sieve

#
The path to the directory where the personal Sieve scripts are stored. For
ManageSieve this is where the uploaded scripts are stored.
sieve_dir = ~/sieve

}

Restart Dovecot.

2.1.2 Postfix

This section gives an example about building a simple virtual hosting configuration with Postfix. Refer to the official
documentation for more explanation.

Map files

You first need to create configuration files (or map files) that will be used by Postfix to lookup into Modoboa tables.

To automaticaly generate the requested map files and store them in a directory, run the following command:

$ modoboa-admin.py postfix_maps --dbtype <mysql|postgres|sqlite> mapfiles

mapfiles is the directory where the files will be stored. Answer the few questions and you’re done.

Configuration

Use the following configuration in the /etc/postfix/main.cf file (this is just one possible configuration):

Stuff before
virtual_transport = dovecot
dovecot_destination_recipient_limit = 1

relay_domains =
virtual_mailbox_domains = <driver>:/etc/postfix/sql-domains.cf
virtual_alias_domains = <driver>:/etc/postfix/sql-domain-aliases.cf
virtual_alias_maps = <driver>:/etc/postfix/sql-aliases.cf,

<driver>:/etc/postfix/sql-domain-aliases-mailboxes.cf,
<driver>:/etc/postfix/sql-catchall-aliases.cf

smtpd_recipient_restrictions =
...
check_recipient_access <driver>:/etc/postfix/sql-maintain.cf

2.1. Dovecot and Postfix 29

http://www.postfix.org/VIRTUAL_README.html
http://www.postfix.org/VIRTUAL_README.html

Modoboa Documentation, Release 1.1.0

permit_mynetworks
...

Stuff after

Replace <driver> by the name of the database you use.

Then, edit the /etc/postfix/master.cf file and add the following definition at the end:

dovecot unix - n n - - pipe
flags=DRhu user=vmail:vmail argv=/usr/lib/dovecot/deliver -f ${sender} -d ${recipient}

Restart Postfix.

2.2 Web servers

2.2.1 Apache2

Note: The following instructions are meant to help you get your site up and running quickly. However it is not
possible for the people contributing documentation to Modoboa to test every single combination of web server, wsgi
server, distribution, etc. So it is possible that your installation of uwsgi or nginx or Apache or what-have-you works
differently. Keep this in mind.

mod_wgsi

First, make sure that mod_wsgi is installed on your server.

Create a new virtualhost in your Apache configuration and put the following content inside:

<VirtualHost *:80>
ServerName <your value>
DocumentRoot <path to your site’s dir>

Alias /media/ <path to your site’s dir>/media/
<Directory <path to your site’s dir>/media>
Order deny,allow
Allow from all

</Directory>

Alias /sitestatic/ <path to your site’s dir>/sitestatic/
<Directory <path to your site’s dir>/sitestatic>
Order deny,allow
Allow from all

</Directory>

WSGIScriptAlias / <path to your site’s dir>/wsgi.py
</VirtualHost>

This is just one possible configuration.

Note: Django 1.3 users, please consult this page, it contains an example wsgi.py file.

30 Chapter 2. Integration with other softwares

https://docs.djangoproject.com/en/1.3/howto/deployment/modwsgi/

Modoboa Documentation, Release 1.1.0

Note: You will certainly need more configuration in order to launch Apache.

mod_python

First, make sure that mod_python is installed on your server.

Create a new virtualhost in your Apache configuration and put the following content inside:

<VirtualHost *:80>
ServerName <your value>
DocumentRoot <path to your site’s dir>

<Location "/">
SetHandler mod_python
PythonHandler django.core.handlers.modpython
PythonPath "[’<path to directory that contains your site’s dir>’] + sys.path"
SetEnv DJANGO_SETTINGS_MODULE <your site’s name>.settings

</Location>

Alias "/sitestatic" "<path to your site’s dir>/sitestatic"
<Location "/sitestatic/">
SetHandler None

</Location>

Alias "/media" "<path to your site’s dir>/media"
<Location "/media/">
SetHandler None

</Location>
</VirtualHost>

This is just one possible configuration.

Note: You will certainly need more configuration in order to launch Apache.

2.2.2 Nginx

Note: The following instructions are meant to help you get your site up and running quickly. However it is not
possible for the people contributing documentation to Modoboa to test every single combination of web server, wsgi
server, distribution, etc. So it is possible that your installation of uwsgi or nginx or Apache or what-have-you works
differently. Keep this in mind.

Green Unicorn

Nginx is a really fast HTTP server. Associated with Green Unicorn, it gives you one of the best setups to serve
python/Django applications. Modoboa’s performance is really good with this configuration.

To use this setup, first download and install nginx and gunicorn. Then, use the following sample gunicorn configuration
(create a new file named gunicorn.conf.py inside Modoboa’s root dir):

backlog = 2048
bind = "unix:/var/run/gunicorn/modoboa.sock"
pidfile = "/var/run/gunicorn/modoboa.pid"

2.2. Web servers 31

http://nginx.org/
http://gunicorn.org/
http://wiki.nginx.org/Install
http://gunicorn.org/install.html

Modoboa Documentation, Release 1.1.0

daemon = True
debug = False
workers = 2
logfile = "/var/log/gunicorn/modoboa.log"
loglevel = "info"

To start gunicorn, execute the following commands:

$ cd <modoboa dir>
$ gunicorn -c gunicorn.conf.py <modoboa dir>.wsgi:application

Now the nginx part. Just create a new virtual host and use the following configuration:

upstream modoboa {
server unix:/var/run/gunicorn/modoboa.sock fail_timeout=0;

}

server {
listen 443 ssl;
ssl on;
keepalive_timeout 70;

server_name <host fqdn>;
root <modoboa’s root dir>;

access_log /var/log/nginx/<host fqdn>.access.log;
error_log /var/log/nginx/<host fqdn>.error.log;

ssl_certificate <ssl certificate for your site>;
ssl_certificate_key <ssl certificate key for your site>;

location /sitestatic/ {
autoindex on;

}

location /media/ {
autoindex on;

}

location / {
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_set_header Host $http_host;
proxy_redirect off;
proxy_set_header X-Forwarded-Protocol ssl;

proxy_pass http://modoboa;
}

}

If you do not plan to use SSL then change the listen directive to listen 80; and delete each of the following
directives:

ssl on;
keepalive_timeout 70;
ssl_certificate <ssl certificate for your site>;
ssl_certificate_key <ssl certificate key for your site>;
proxy_set_header X-Forwarded-Protocol ssl;

If you do plan to use SSL, you’ll have to generate a certificate and a key. This article contains information about how
to do it.

32 Chapter 2. Integration with other softwares

http://wiki.nginx.org/HttpSslModule#Generate_Certificates

Modoboa Documentation, Release 1.1.0

Paste this content to your configuration (replace values between <> with yours), restart nginx and enjoy a really fast
application!

uwsgi

The following setup is meant to get you started quickly. You should read the documentation of both nginx and uwsgi
to understand how to optimize their configuration for your site.

The Django documentation includes the following warning regarding uwsgi:

Warning: Some distributions, including Debian and Ubuntu, ship an outdated version of uWSGI that does not
conform to the WSGI specification. Versions prior to 1.2.6 do not call close on the response object after handling
a request. In those cases the request_finished signal isn’t sent. This can result in idle connections to database and
memcache servers.

Use uwsgi 1.2.6 or newer. If you do not, you will run into problems. Modoboa will fail in obscure ways.

To use this setup, first download and install nginx and uwsgi.

Here is a sample nginx configuration:

server {
listen 443 ssl;
ssl on;
keepalive_timeout 70;

server_name <host fqdn>;
root <modoboa’s settings dir>;

ssl_certificate <ssl certificate for your site>;
ssl_certificate_key <ssl certificate key for your site>;

access_log /var/log/nginx/<host fqdn>.access.log;
error_log /var/log/nginx/<host fqdn>.error.log;

location <modoboa’s root url>/sitestatic/ {
autoindex on;
alias <location of sitestatic on your file system>;

}

Whether or not Modoboa uses a media directory depends on how
you configured Modoboa. It does not hurt to have this.
location <modoboa’s root url>/media/ {

autoindex on;
alias <location of media on your file system>;

}

This denies access to any file that begins with
".ht". Apache’s .htaccess and .htpasswd are such files. A
Modoboa installed from scratch would not contain any such
files, but you never know what the future holds.
location ~ /\.ht {

deny all;
}

location <modoba’s root url>/ {
include uwsgi_params;
uwsgi_pass <uwsgi port>;

2.2. Web servers 33

http://wiki.nginx.org/Install
http://uwsgi-docs.readthedocs.org/en/latest/WSGIquickstart.html

Modoboa Documentation, Release 1.1.0

uwsgi_param UWSGI_SCRIPT modoboa_server.wsgi:application
uwsgi_param UWSGI_SCHEME https;

}
}

If you do not plan to use SSL then change the listen directive to listen 80; and delete each of the following
directives:

ssl on;
keepalive_timeout 70;
ssl_certificate <ssl certificate for your site>;
ssl_certificate_key <ssl certificate key for your site>;
uwsgi_param UWSGI_SCHEME https;

If you do plan to use SSL, you’ll have to generate a certificate and a key. This article contains information about how
to do it.

Make sure to replace the <...> in the sample configuration with appropriate values. Here are some explanations for
the cases that may not be completely self-explanatory:

<modoboa’s settings dir> Where Modoboa’s settings.py resides. This is also where the
sitestatic and media directories reside.

<modoboa’s root url> This is the URL which will be the root of your Modoboa site at your domain. For in-
stance, if your Modoboa installation is reachable at at https://foo/modoboa then <modoboa’s root
url> is /modoboa. In this case you probably also have to set the alias directives to point to where Mod-
oboa’s sitestatic and media directories are because otherwise nginx won’t be able to find them.

If Modoboa is at the root of your domain, then <modoboa root url> is an empty string and can be deleted
from the configuration above. In this case, you probably do not need the alias directives.

<uwsgi port> The location where uwsig is listening. It could be a unix domain socket or an address:port combi-
nation. Ubuntu configures uwsgi so that the port is:

unix:/run/uwsgi/app/<app name>/socket

where <app name> is the name of the application.

Your uwsgi configuration should be:

[uwsgi]
Not needed when using uwsgi from pip
plugins = python
chdir = <modoboa’s top dir>
module = <name>.wsgi:application
master = true
harakiri = 30
sharedarea = 4
processes = 4
vhost = true
no-default-app = true

The plugins directive should be turned on if you use a uwsgi installation that requires it. If uwsgi was installed from
pip, it does not require it. In the configuration above:

<modoboa’s top dir> The directory where manage.py resides. This directory is the parent of <modoboa’s
settings dir>

<name> The name that you passed to modoboa-admin.py deploy when you created your Modoboa instance.

34 Chapter 2. Integration with other softwares

http://wiki.nginx.org/HttpSslModule#Generate_Certificates

CHAPTER 3

Extending Modoboa

3.1 Adding a new plugin

3.1.1 Introduction

Modoboa offers a plugin API to expand its capabilities. The current implementation provides the following possibili-
ties:

• Expand navigation by adding entry points to your plugin inside the GUI

• Access and modify administrative objects (domains, mailboxes, etc.)

• Register callback actions for specific events

Plugins are nothing more than Django applications with an extra piece of code that integrates them into Modoboa.
Usually, the __init__.py file will contain a complete description of the plugin:

• Admin and user parameters

• Observed events

• Custom menu entries

The communication between both applications is provided by Available events. Modoboa offers some kind of hooks
to let plugin add custom actions.

The following subsections describe plugin architecture and explain how you can create your own plugin.

3.1.2 The required glue

To create a new plugin, just start a new django application like this (into Modoboa’s directory):

$ python manage.py startapp

Then, you need to register this application using the provided API. Just copy/paste the following example into the
__init__.py file of the future extension:

from modoboa.extensions import ModoExtension, exts_pool

class MyExtension(ModoExtension):
name = "myext"

35

Modoboa Documentation, Release 1.1.0

label = "My Extension"
version = "0.1"
description = "A description"
url = "myext_root_location" # optional, name is used if not defined

def init(self):
"""This method is called when the extension is activated.
"""
pass

def load(self):
"""This method is called when Modoboa loads available and activated plugins.

Declare parameters and register events here.
"""
pass

def destroy(self):
"""This function is called when a plugin is disabled from the interface.

Unregister parameters and events here.
"""
pass

exts_pool.register_extension(MyExtension)

Once done, simply add your plugin’s module name to the INSTALLED_APPS variable located inside
settings.py. Optionaly, run python manage.py syncdb if your plugin provides custom tables and
python manage.py collectstatic to update static files.

3.1.3 Parameters

A plugin can declare its own parameters. There are two levels available:

• ‘Administration’ parameters : used to configure the plugin, editable inside the Admin > Settings > Parameters
page,

• ‘User’ parameters : per-user parameters (or preferences), editable inside the Options > Preferences page.

Playing with parameters

To declare a new administration parameter, use the following function:

from modoboa.lib import parameters

parameters.register_admin(name, **kwargs)

To declare a new user parameter, use the following function:

parameter.register_user(name, **kwargs)

Both functions accept extra arguments listed here:

• type : parameter’s type, possible values are : int, string, list, list_yesno,

• deflt : default value,

• help : help text,

36 Chapter 3. Extending Modoboa

Modoboa Documentation, Release 1.1.0

• values : list of possible values if type is list.

To undeclare parameters (for example when a plugin is disabled is disabled from the interface), use the following
function:

parameters.unregister_app(appname)

appname corresponds to your plugin’s name, ie. the name of the directory containing the source code.

3.1.4 Custom administrative roles

Modoboa uses Django’s internal permission system. Administrative roles are nothing more than groups (Group
instances).

If an extension needs to add new roles, it needs to follow those steps:

1. Create a new Group instance. It can be done by providing fixtures or by creating it into the extension init
function

2. A a new listener for the GetExtraRoles event that will return the group’s name

3.2 Available events

3.2.1 Introduction

Modoboa provides a simple API to interact with events. It understands two kinds of events:

• Those returning a value

• Those returning nothing

Listening to a specific event is achieved as follows:

from modoboa.lib import events

def callback(*args):
pass

events.register(’event’, callback)

You can also use the custom decorator events.observe:

@events.observe(’event’)
def callback(*args):
pass

event is the event’s name you want to listen to, callback is the function that will be called each time this event is
raised. Each event impose to callbacks a specific prototype to respect. See below for a detailled list.

To stop listening to as specific event, you must use the unregister function:

events.unregister(’event’, callback)

The parameters are the same than those used with register.

To unregister all events declared by a specific extension, use the unregister_extension function:

events.unregister_extension([name])

3.2. Available events 37

https://docs.djangoproject.com/en/dev/howto/initial-data/

Modoboa Documentation, Release 1.1.0

name is the extension’s name but it is optional. Leave it empty to let the function guess the name.

Read further to get a complete list and description of all available events.

3.2.2 Supported events

AccountAutoCreated

Raised when a new account is automatically created (example: LDAP synchronization).

Callback prototype:

def callback(account): pass

• account is the newly created account (User instance)

AccountCreated

Raised when a new account is created.

Callback prototype:

def callback(account): pass

• account is the newly created account (User instance)

AccountDeleted

Raised when an existing account is deleted.

Callback prototype:

def callback(account, byuser, **options): pass

• account is the account that is going to be deleted

• byuser is the adminstrator deleting account

AccountExported

Raised when an account is exported to CSV.

Callback prototype:

def callback(account): pass

• account is the account being exported

Must return a list of values to include in the export.

AccountImported

Raised when an account is imported from CSV.

Callback prototype:

38 Chapter 3. Extending Modoboa

Modoboa Documentation, Release 1.1.0

def callback(user, account, row): pass

• user is the user importing the account

• account is the account being imported

• row is a list containing what remains from the CSV definition

AccountModified

Raised when an existing account is modified.

Callback prototype:

def callback(oldaccount, newaccount): pass

• oldaccount is the account before it is modified

• newaccount is the account after the modification

AdminMenuDisplay

Raised when an admin menu is about to be displayed.

Callback prototype:

def callback(target, user): pass

The target argument indicates which menu is being displayed. Possible values are:

• admin_menu_box : corresponds to the menu bar available inside administration pages

• top_menu : corresponds to the top black bar

See UserMenuDisplay for a description of what callbacks that listen to this event must return.

CanCreate

Raised just before a user tries to create a new object.

Callback prototype:

def callback(user): pass

• user is a User instance

Return True or False to indicate if this user can respectively create or not create a new Domain object.

CheckDomainName

Raised before the unicity of a domain name is checked. By default, modoboa prevents duplicate names between
domains and domain aliases but extensions have the possibility to extend this rule using this event.

Callback prototype:

def callback(): pass

Must return a list of 2uple, each one containing a model class and an associated label.

3.2. Available events 39

Modoboa Documentation, Release 1.1.0

CheckExtraAccountForm

When an account is being modified, this event lets extensions check if this account is concerned by a specific form.

Callback prototype:

def callback(account, form): pass

• account is the User instance beeing modified

• form is a dictionnary (same content as for ExtraAccountForm)

Callbacks listening to this event must return a list containing one Boolean.

DomainAliasCreated

Raised when a new domain alias is created.

Callback prototype:

def callback(user, domain_alias): pass

• user is the new domain alias owner (User instance)

• domain_alias is the new domain alias (DomainAlias instance)

DomainAliasDeleted

Raised when an existing domain alias is about to be deleted.

Callback prototype:

def callback(domain_alias): pass

• domain_alias is a DomainAlias instance

DomainCreated

Raised when a new domain is created.

Callback prototype:

def callback(user, domain): pass

• user corresponds to the User object creating the domain (its owner)

• domain is a Domain instance

DomainDeleted

Raised when an existing domain is about to be deleted.

Callback prototype:

def callback(domain): pass

• domain is a Domain instance

40 Chapter 3. Extending Modoboa

Modoboa Documentation, Release 1.1.0

DomainModified

Raised when a domain has been modified.

Callback prototype:

def callback(domain): pass

• domain is the modified Domain instance, it contains an extra oldname field which contains the old name

DomainOwnershipRemoved

Raised before the ownership of a domain is removed from its original creator.

Callback prototype:

def callback(owner, domain): pass

• owner is the original creator

• domain is the Domain instance being modified

ExtDisabled

Raised just after an extension has been disabled.

Callback prototype:

def callback(extension): pass

• extension is an Extension instance

ExtEnabled

Raised just after an extension has been activated.

Callback prototype:

def callback(extension): pass

• extension is an Extension instance

ExtraAccountActions

Raised when the account list is displayed. Let developers define new actions to act on a specific user.

Callback prototype:

def callback(account): pass

• account is the account being listed

3.2. Available events 41

Modoboa Documentation, Release 1.1.0

ExtraAccountForm

Let extensions add new forms to the account edition form (the one with tabs).

Callback prototype:

def callback(user, account): pass

• user is a User instance corresponding to the currently logged in user

• account is the account beeing modified (User instance)

Callbacks listening to the event must return a list of dictionnaries, each one must contain at least three keys:

{"id" : "<the form’s id>",
"title" : "<the title used to present the form>",
"cls" : TheFormClassName}

ExtraAdminContent

Let extensions add extra content into the admin panel.

Callback prototype:

def callback(user, target, currentpage): pass

• user is a User instance corresponding to the currently logged in user

• target is a string indicating the place where the content will be displayed. Possible values are : leftcol

• currentpage is a string indicating which page (or section) is displayed. Possible values are : domains,
identities

Callbacks listening to this event must return a list of string.

ExtraDomainEntries

Raised to request extra entries to display inside the domains listing.

Callback prototype:

def callback(user, domfilter, searchquery, **extrafilters): pass

• user is the User instance corresponding to the currently logged in user

• domfilter is a string indicating which domain type the user needs

• searchquery is a string containing a search query

• extrafilters is a set of keyword arguments that may contain additional filters

Must return a valid QuerySet.

ExtraDomainFilters

Raised to request extra filters for the domains listing page. For example, the postfix_relay_domains extension let users
filter entries based on service types.

Callback prototype:

42 Chapter 3. Extending Modoboa

Modoboa Documentation, Release 1.1.0

def callback(): pass

Must return a list of valid filter names (string).

ExtraDomainForm

Let extensions add new forms to the domain edition form (the one with tabs).

Callback prototype:

def callback(user, domain): pass

• user is a User instance corresponding to the currently logged in user

• domain is the domain beeing modified (Domain instance)

Callbacks listening to the event must return a list of dictionnaries, each one must contain at least three keys:

{"id" : "<the form’s id>",
"title" : "<the title used to present the form>",
"cls" : TheFormClassName}

ExtraDomainImportHelp

Raised to request extra help text to display inside the domain import form.

Callback prototype:

def callback(): pass

Must return a list a string.

ExtraDomainMenuEntries

Raised to request extra entries to include in the left menu of the domains listing page.

Callback prototype:

def callback(user): pass

• user is the User instance corresponding to the currently logged in user

Must return a list of dictionaries. Each dictionary must contain at least three keys:

{"name": "<menu name>",
"label": "<menu label>",
"url": "<menu url>"}

ExtraFormFields

Raised to request extra fields to include in a django form.

Callback prototype:

def callback(form_name, instance=None): pass

• form_name is a string used to distinguish a specific form

3.2. Available events 43

Modoboa Documentation, Release 1.1.0

• instance is a django model instance related to form_name

Must return a list of 2uple, each one containing the following information:

(’field name’, <Django form field instance>)

ExtraRelayDomainForm

Let extensions add new forms to the relay domain edition form (the one with tabs).

Callback prototype:

def callback(user, rdomain): pass

• user is the User instance corresponding to the currently logged in user

• rdomain is the relay domain being modified (RelayDomain instance)

Callbacks listening to the event must return a list of dictionnaries, each one must contain at least three keys:

{"id" : "<the form’s id>",
"title" : "<the title used to present the form>",
"cls" : TheFormClassName}

FillAccountInstances

When an account is beeing modified, this event is raised to fill extra forms.

Callback prototype:

def callback(user, account, instances): pass

• user is a User instance corresponding to the currently logged in user

• account is the User instance beeing modified

• instances is a dictionnary where the callback will add information needed to fill a specific form

FillDomainInstances

When a domain is beeing modified, this event is raised to fill extra forms.

Callback prototype:

def callback(user, domain, instances): pass

• user is a User instance corresponding to the currently logged in user

• domain is the Domain instance beeing modified

• instances is a dictionnary where the callback will add information needed to fill a specific form

FillRelayDomainInstances

When a relay domain is being modified, this event is raised to fill extra forms.

Callback prototype:

44 Chapter 3. Extending Modoboa

Modoboa Documentation, Release 1.1.0

def callback(user, rdomain, instances): pass

• user is the User instance corresponding to the currently logged in user

• rdomain is the RelayDomain instance being modified

• instances is a dictionnary where the callback will add information needed to fill a specific form

GetAnnouncement

Some places in the interface let plugins add their own announcement (ie. message).

Callback prototype:

def callback(target): pass

• target is a string indicating the place where the announcement will appear:

• loginpage : corresponds to the login page

Callbacks listening to this event must return a list of string.

GetDomainActions

Raised to request the list of actions available for the domains listing entry being displayed.

Callback prototype:

def callback(user, rdomain): pass

• user is the User instance corresponding to the currently logged in user

• rdomain is the RelayDomain instance being displayed

Must return a list of dictionaries, each dictionary containing at least the following entries:

{"name": "<action name>",
"url": "<action url>",
"title": "<action title>",
"img": "<action icon>"}

GetDomainModifyLink

Raised to request the modification url of the domains listing entry being displayed.

Callback prototype:

def callback(domain): pass

• domain is a model instance (RelayDomain for example)

Must return a dictionary containing at least the following entry:

{’url’: ’<modification url>’}

3.2. Available events 45

Modoboa Documentation, Release 1.1.0

GetExtraLimitTemplates

Raised to request extra limit templates. For example, the postfix_relay_domains extension define a template to limit
the number of relay domains an administrator can create.

Callback prototype:

def callback(): pass

Must return a list of set. Each set must contain at least three entries:

[(’<limit_name>’, ’<limit label>’, ’<limit help text>’)]

GetExtraParameters

Raised to request extra parameters for a given parameters form.

Callback prototype:

def callback(application, level): pass

• application is the name of the form’s application (ie. admin, amavis, etc.)

• level is the form’s level: A for admin or U for user

Must return a dictionary. Each entry must be a valid Django form field.

GetExtraRoles

Let extensions define new administrative roles.

Callback prototype:

def callback(user): pass

• user is a User instance corresponding to the currently logged in user

Callbacks listening to this event must return a list of 2uple (two strings) which respect the following format: (value,
label).

GetStaticContent

Let extensions add static content (ie. CSS or javascript) to default pages. It is pretty useful for functionalities that
don’t need a template but need javascript stuff.

Callback prototype:

def callback(caller, user): pass

• caller is name of the application (or the location) responsible for the call

• user is a User instance corresponding to the currently logged in user

Callbacks listening to this event must return a list of string.

46 Chapter 3. Extending Modoboa

Modoboa Documentation, Release 1.1.0

ImportObject

Raised to request the function handling an object being imported from CSV.

Callback prototype:

def callback(objtype): pass

objtype is the type of object being imported

Must return a list of function. A valid import function must respect the following prototype:

def import_function(user, row, formopts): pass

• user is the User instance corresponding to the currently logged in user

• row is a string containing the object’s definition (CSV format)

• formopts is a dictionary that may contain options

MailboxAliasCreated

Raised when a new mailbox alias is created.

Callback prototype:

def callback(user, mailbox_alias): pass

• user is the new domain alias owner (User instance)

• mailbox_alias is the new mailbox alias (Alias instance)

MailboxAliasDeleted

Raised when an existing mailbox alias is about to be deleted.

Callback prototype:

def callback(mailbox_alias): pass

• mailbox_alias is an Alias instance

MailboxCreated

Raised when a new mailbox is created.

Callback prototype:

def callback(user, mailbox): pass

• user is the new mailbox’s owner (User instance)

• mailbox is the new mailbox (Mailbox instance)

3.2. Available events 47

Modoboa Documentation, Release 1.1.0

MailboxDeleted

Raised when an existing mailbox is about to be deleted.

Callback prototype:

def callback(mailbox): pass

• mailbox is a Mailbox instance

MailboxModified

Raised when an existing mailbox is modified.

Callback prototype:

def callback(newmailbox, oldmailbox): pass

• newmailbox is a Mailbox instance containing the new values

• oldmailbox is a Mailbox instance containing the old values

PasswordChange

Raised just before a password change action.

Callback prototype:

def callback(user): pass

• user is a User instance

Callbacks listening to this event must return a list containing either True or False. If at least one True is returned,
the password change will be cancelled (ie. changing the password for this user is disabled).

TopNotifications

Let extensions add custom content into the top bar.

Callback prototype:

def callback(user): pass

• user is a User instance corresponding to the currently logged in user

Callbacks listening to this event must return a list of string.

UserLogin

Raised when a user logs in.

Callback prototype:

def callback(request, username, password): pass

48 Chapter 3. Extending Modoboa

Modoboa Documentation, Release 1.1.0

UserLogout

Raised when a user logs out.

Callback prototype:

def callback(request): pass

UserMenuDisplay

Raised when a user menu is about to be displayed.

Callback prototype:

def callback(target, user): pass

The target argument indicates which menu is being displayed. Possible values are:

• options_menu: corresponds to the top-right user menu

• uprefs_menu: corresponds to the menu bar available inside the User preferences page

• top_menu: corresponds to the top black bar

All the callbacks that listen to this event must return a list of dictionnaries (corresponding to menu entries). Each
dictionnary must contain at least the following keys:

{"name" : "a_name_without_spaces",
"label" : _("The menu label"),
"url" : reverse("your_view")}

RelayDomainAliasCreated

Raised when a new relay domain alias is created.

Callback prototype:

def callback(user, rdomain_alias): pass

• user is the new relay domain alias owner (User instance)

• rdomain_alias is the new relay domain alias (DomainAlias instance)

RelayDomainAliasDeleted

Raised when an existing relay domain alias is about to be deleted.

Callback prototype:

def callback(rdomain_alias): pass

• rdomain_alias is a RelayDomainAlias instance

RelayDomainCreated

Raised when a new relay domain is created.

Callback prototype:

3.2. Available events 49

Modoboa Documentation, Release 1.1.0

def callback(user, rdomain): pass

• user corresponds to the User object creating the relay domain (its owner)

• rdomain is a RelayDomain instance

RelayDomainDeleted

Raised when an existing relay domain is about to be deleted.

Callback prototype:

def callback(rdomain): pass

• rdomain is a RelayDomain instance

RelayDomainModified

Raised when a relay domain has been modified.

Callback prototype:

def callback(rdomain): pass

• rdomain is the modified RelayDomain instance, it contains an extra oldname field which contains the
old name

RoleChanged

Raised when the role of an account is about to be changed.

Callback prototype:

def callback(account, role): pass

• account is the account being modified

• role is the new role (string)

SaveExtraFormFields

Raised to save extra fields declared using ExtraFormFields.

Callback prototype:

def callback(form_name, instance, values): pass

• form_name is a string used to distinguish a specific form

• instance is a django model instance related to form_name

• values is a dictionary containing the form’s values

50 Chapter 3. Extending Modoboa

Modoboa Documentation, Release 1.1.0

UserCanSetRole

Raised to check if a user is allowed to set a given role to an account.

Callback prototype:

def callback(account, role): pass

• user is the User instance corresponding to the currently logged in user

• role is the role user tries to set

Must return a list containing True or False to indicate if this user can is allowed to set role.

3.2. Available events 51

Modoboa Documentation, Release 1.1.0

52 Chapter 3. Extending Modoboa

CHAPTER 4

Additional resource

4.1 Migrating from other software

4.1.1 PostfixAdmin

Since version 0.8.5, Modoboa provides a simple script to migrate an existing PostfixAdmin (version 2.3.3+) database
to a Modoboa one.

Note: This script is only suitable for a new installation.

First, you must follow the Installation step to create a fresh Modoboa database.

Once done, edit the settings.py file. First, add a new database connection named pfxadmin into the
DATABASES variable corresponding to your PostfixAdmin setup:

DATABASES = {
"default" : {
default connection definition

},
"pfxadmin" : {
"ENGINE" : "<engine>",
"NAME" : "<database name>",
"USER" : "<database user>",
"PASSWORD" : "<user password>",

}
}

This connection should correspond to the one defined in PostfixAdmin’s configuration file.

You are now ready to start the migration. Enter Modoboa’s root directory and execute the following command:

$ PYTHONPATH=$PWD/.. DJANGO_SETTINGS_MODULE=modoboa.settings \
./tools/pfxadmin_migrate/migrate.py -r -p <directory that stores mailboxes>

Depending on how many domains/mailboxes your existing setup contains, the migration can be long. Just wait for the
script’s ending.

Once the migration has succeed, go the Admin > Configuration panel, click on the admin row and modify the value of
MAILDIR_ROOT as follow:

53

http://postfixadmin.sourceforge.net/

Modoboa Documentation, Release 1.1.0

MAILDIR_ROOT =

The corresponding field must be empty. Don’t touch other fields except PASSWORD_SCHEME, if needed. (set it to the
same method as the one used by PostfixAdmin, check its configuration file if you’re not sure)

Click on the Save button.

The procedure is over, edit the settings.py file and:

• remove the pfxadmin database connection from the DATABASES variable

• remove the ’modoboa.tools.pfxadmin_migrate’, from the INSTALLED_APPS variable

You should be able to connect to Modoboa using the same credentials you were using to connect to PostfixAdmin.

4.2 Using the virtual machine

4.2.1 Introduction

A virtual machine with a ready-to-use Modoboa setup is available here. It is composed of the following components:

• Debian 6.0 (squeeze)

• Modoboa and its prerequisites

• MySQL

• Postfix

• Dovecot

• nginx and gunicorn

Actually, it is the result you obtain if you follow the official documentation.

The disk image is using the VMDK format and is compressed using bzip2. To decompress it, just run the following
command:

$ bunzip2 modoboa.vmdk.bz2

If you can’t use the vmdk format, you can use qemu to convert it to another one. For example:

$ qemu-img convert modoboa.vmdk -O qcow2 modoboa.qcow2

Then, just use your prefered virtualization software (qemu, kvm, virtualbox, etc.) to start the machine. You’ll need to
configure at least one bridged network interface if you want to be able to play with Modoboa, ie. your machine must
be visible from your network.

The default network interface of the machine (eth0) is configured to use the DHCP protocol.

4.2.2 Connect to the machine

The following UNIX users are available if you want to connect to the system:

Login Password Description
root demo the root user
demo demo an unpriviliged user

To connect to Modoboa, first connect to the system and retrieve its current network address like this:

54 Chapter 4. Additional resource

http://modoboa.org/resources/modoboa.vmdk.bz2
http://en.wikipedia.org/wiki/VMDK
http://qemu.org/

Modoboa Documentation, Release 1.1.0

$ /sbin/ifconfig eth0

Once you know its address, open a web browser and go to this url:

http://<ip_address>/admin/

You should see the login page. Here are the users available by default:

Login Pass-
word

Capabitilies

admin password Default super administrator. Can do anything on the admin but can’t access
applications

ad-
min@demo.local

admin Administrator of the domain demo.local. Can administrater its domain and access
to applications.

user@demo.local user Simple user. Can access to applications.

4.2. Using the virtual machine 55

mailto:admin@demo.local
mailto:admin@demo.local
mailto:user@demo.local

