
Modoboa Documentation
Release 1.5.2

Antoine Nguyen

May 08, 2016

Contents

1 Getting started 1
1.1 Installation . 1
1.2 Upgrading an existing installation . 4
1.3 Configuration . 12

2 Plugins 17
2.1 Amavisd-new frontend . 17
2.2 Graphical statistics . 17
2.3 Radicale frontend . 17
2.4 Postfix auto-reply messages . 17
2.5 Sieve filters . 17
2.6 Webmail . 17

3 Integration with other softwares 19
3.1 Dovecot and Postfix . 19
3.2 Web servers . 26

4 Extending Modoboa 31
4.1 Development recipes for Modoboa . 31
4.2 Adding a new plugin . 32
4.3 Available events . 35

5 Additional resource 51
5.1 Tools for migration . 51
5.2 Using the virtual machine . 51

i

ii

CHAPTER 1

Getting started

1.1 Installation

1.1.1 For the lazy ones

If you are in a hurry, you will love the modoboa installer! It’s a set of Python scripts to install a fully functional email
server on one machine (modoboa, postfix, dovecot, amavis and more).

To use it, just run the following commands in your terminal:

$ git clone https://github.com/modoboa/modoboa-installer
$ cd modoboa-installer
$ sudo ./run.py <mail server hostname>

Wait a few minutes and you’re done o/

If you have more time or if you are just curious, you can install Modoboa the old way by going to the next section.

1.1.2 Requirements

• Python version 2.7+

• Django version 1.7+

• lxml python module

• pycrypto python module

• rrdtool python binding

• sievelib python module

• chardet python module

• argparse python module

• reversion python module

1.1.3 Get Modoboa

You can choose between two options:

• Use the Python package available on the PyPI

1

https://github.com/modoboa/modoboa-installer
http://python.org/
http://docs.djangoproject.com/en/dev/intro/install/#intro-install
http://lxml.de/installation.html
http://www.dlitz.net/software/pycrypto/
http://oss.oetiker.ch/rrdtool/
http://pypi.python.org/pypi/sievelib
http://pypi.python.org/pypi/chardet
http://pypi.python.org/pypi/argparse
https://github.com/etianen/django-reversion
http://pypi.python.org/pypi

Modoboa Documentation, Release 1.5.2

• Download the sources tarball

The easiest one is to install it from PyPI. Just run the following command and you’re done:

$ pip install modoboa

If you prefer to use the tarball, download the latest one and run the following procedure:

$ tar xzf modoboa-<version>.tar.gz
$ cd modoboa-<version>
$ python setup.py install

All dependencies will be installed regardless the way you chose. The only exception concerns the RRDtool binding
because there isn’t any python package available, it is directly provided with the official tarball.

Fortunately, all major distributions include a ready-to-use package. On Debian/Ubuntu:

$ apt-get install libcairo2-dev libpango1.0-dev librrd-dev
$ apt-get install python-rrdtool

virtualenv users

When you deploy an application using virtualenv, you may have to compile some dependencies. For example, mod-
oboa relies on lxml, which is a C python module. In order to install it, you will need to install the following require-
ments:

• python development files

• libxslt development files

• libxml2 development files

• libz development files

On a Debian like system, just run the following command:

$ apt-get install python-dev libxml2-dev libxslt-dev zlib1g-dev

1.1.4 Database

Thanks to Django, Modoboa supports several databases. Depending on the one you will use, you must install the
appropriate python package:

• mysqldb for MySQL

• psycopg2 for PostgreSQL

Then, create a user and a database that will be used by Modoboa. Make sure your database is using UTF8 as a default
charset.

1.1.5 Deployment

modoboa-admin.py, a command line tool, lets you deploy a ready-to-use Modoboa site using only one instruction:

$ modoboa-admin.py deploy modoboa_example --collectstatic [--dburl default:database-url] [--extensions extensions]

2 Chapter 1. Getting started

http://mysql-python.sourceforge.net/
http://www.mysql.com
http://initd.org/psycopg/
http://www.postgresql.org

Modoboa Documentation, Release 1.5.2

Note: By default, the core application of Modoboa and some necessary plugins (admin, relaydomains and limits) are
installed. To install extensions, use the --extensions option which accepts a list of extension names as argument
(--extensions ext1 ext2 ...). If you want to install all extensions, just use the all shortcut like this
--extensions all.

If you choose to install extensions one at a time, you will have to add their names in settings.py to MODOBOA_APPS.
Also ensure that you have the line from modoboa_amavis.settings import * at the end of this file.

The list of available plugins can be found on the index page. Instructions to install them are available on each plugin
page.

Note: You can specify more than one database connection using the --dburl option. Multiple connections
are differentiated by a prefix. The primary connection must use the default: prefix (as shown in the example
above). For the amavis extension extension, use the amavis: prefix. An example two connections: --dburl
default:<database url> amavis:<database url>.

Your database url should meet the following syntax scheme://[user:pass@][host:port]/dbname OR
sqlite:////full/path/to/your/database/file.sqlite.

Available schemes are:

• postgres

• postgresql

• postgis

• mysql

• mysql2

• sqlite

The command will ask you a few questions, answer them and you’re done. You can now go to the First use section.

In case you need a silent installation (e.g. if you’re using Salt-Stack, Ansible or whatever), it’s possible to supply the
database credentials as commandline arguments.

You can see the complete option list by running the following command:

$ modoboa-admin.py help deploy

Note: If you plan to serve Modoboa using a URL prefix, you must change the value of the LOGIN_URL parameter
to LOGIN_URL = ’/<prefix>/accounts/login/’.

1.1.6 First use

Your installation should now have a default super administrator:

• Username: admin

• Password: password

It is strongly recommended to change this password the first time you log into Modoboa.

To check if your installation works, just launch the embedded HTTP server:

1.1. Installation 3

http://modoboa-amavis.readthedocs.org

Modoboa Documentation, Release 1.5.2

$ python manage.py runserver

You should be able to access Modoboa at http://localhost:8000/.

For a fully working interface using the embedded HTTP server, you need to set the DEBUG parameter in settings.py to
True.

For a production environment, we recommend using a stable webserver like Apache2 or Nginx. Don’t forget to set
DEBUG back to False.

1.2 Upgrading an existing installation

This section contains all the upgrade procedures required to use newest versions of Modoboa.

Note: Before running a migration, we recommend that you make a copy of your existing database.

1.2.1 Latest version

Fetch the latest version (see Get Modoboa) and install it. pip users, just run the following command:

$ pip install modoboa==<VERSION>

Replace <VERSION> by the appropriate value.

As for a fresh installation, modoboa-admin.py can be used to upgrade your local configuration. To do so, remove
the directory where your instance was first deployed:

$ rm -rf <modoboa_instance_dir>

Warning: If you customized your configuration file (settings.py) with non-standard settings, you’ll have to
re-apply them.

Finally, run the deploy comamand. Make sure to consult the Deployment section to know more about the available
options.

If you prefer the manual way, check if Specific upgrade instructions are required according to the version you’re
installing.

To finish, restart the web server process according to the environment you did choose. See Web servers for more
details.

1.2.2 Specific upgrade instructions

1.5.0

The API has been greatly improved and a documentation is now available. To enable it, add
’rest_framework_swagger’ to the INSTALLED_APPS variable in settings.py as follows:

INSTALLED_APPS = (
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',

4 Chapter 1. Getting started

http://localhost:8000/

Modoboa Documentation, Release 1.5.2

'django.contrib.messages',
'django.contrib.sites',
'django.contrib.staticfiles',
'reversion',
'rest_framework.authtoken',
'rest_framework_swagger',

)

Then, add the following content into settings.py, just after the REST_FRAMEWORK variable:

SWAGGER_SETTINGS = {
"is_authenticated": False,
"api_version": "1.0",
"exclude_namespaces": [],
"info": {

"contact": "contact@modoboa.com",
"description": ("Modoboa API, requires a valid token."),
"title": "Modoboa API",

}
}

You’re done. The documentation is now available at the following address:

http://<your instance address>/docs/api/

Finally, if you find a TEMPLATE_CONTEXT_PROCESSORS variable in your settings.py file, make sure it looks
like this:

TEMPLATE_CONTEXT_PROCESSORS = global_settings.TEMPLATE_CONTEXT_PROCESSORS + [
'modoboa.core.context_processors.top_notifications',

]

1.4.0

Warning: Please make sure to use Modoboa 1.3.5 with an up-to-date database before an upgrade to 1.4.0.

Warning: Do not follow the regular upgrade procedure for this version.

Some extension have been moved back into the main repository. The main reason for that is that using Modoboa
without them doesn’t make sense.

First of all, you must rename the following applications listed inside the MODOBOA_APPS variable:

Old name New name
modoboa_admin modoboa.admin
modoboa_admin_limits modoboa.limits
modoboa_admin_relaydomains modoboa.relaydomains

Then, apply the following steps:

1. Uninstall old extensions:

$ pip uninstall modoboa-admin modoboa-admin-limits modoboa-admin-relaydomains

2. Install all extension updates using pip (check the Modoboa > Information page)

3. Manually migrate database:

1.2. Upgrading an existing installation 5

http:/

Modoboa Documentation, Release 1.5.2

$ cd <instance_dir>
$ python manage.py migrate auth
$ python manage.py migrate admin 0001 --fake
$ python manage.py migrate admin
$ python manage.py migrate limits 0001 --fake
$ python manage.py migrate relaydomains 0001 --fake
$ python manage.py migrate

4. Finally, update static files:

$ python manage.py collectstatic

This version also introduces a REST API. To enable it:

1. Add ’rest_framework.authtoken’ to the INSTALLED_APPS variable

2. Add the following configuration inside settings.py:

Rest framework settings

REST_FRAMEWORK = {
'DEFAULT_AUTHENTICATION_CLASSES': (

'rest_framework.authentication.TokenAuthentication',
),
'DEFAULT_PERMISSION_CLASSES': (

'rest_framework.permissions.IsAuthenticated',
)

}

3. Run the following command:

$ python manage.py migrate

1.3.5

To enhance security, Modoboa now checks the strength of user passwords <https://github.com/dstufft/django-
passwords>_.

To use this feature, add the following configuration into the settings.py file:

django-passwords

PASSWORD_MIN_LENGTH = 8

PASSWORD_COMPLEXITY = {
"UPPER": 1,
"LOWER": 1,
"DIGITS": 1

}

1.3.2

Modoboa now uses the atomic requests mode to preserve database consistency (reference).

To enable it, update the DATABASES variable in settings.py as follows:

6 Chapter 1. Getting started

https://docs.djangoproject.com/en/1.7/topics/db/transactions/#tying-transactions-to-http-requests

Modoboa Documentation, Release 1.5.2

DATABASES = {
"default": {

stuff before...
"ATOMIC_REQUESTS": True

},
"amavis": {

stuff before...
"ATOMIC_REQUESTS": True

}
}

1.3.0

This release does not bring awesome new features but it is a necessary bridge to the future of Modoboa. All extensions
now have their own git repository and the deploy process has been updated to reflect this change.

Another important update is the use of Django 1.7. Besides its new features, the migration system has been reworked
and is now more robust than before.

Before we begin with the procedure, here is a table showing old extension names and their new name:

Old name New package name New module name
modoboa.extensions.admin modoboa-admin modoboa_admin
modoboa.extensions.limits modoboa-admin-limits modoboa_admin_limits
modoboa.extensions.postfix_autoreply modoboa-postfix-autoreply modoboa_postfix_autoreply
modoboa.extensions.postfix_relay_domains modoboa-admin-relaydomains modoboa_admin_relaydomains
modoboa.extensions.radicale modoboa-radicale modoboa_radicale
modoboa.extensions.sievefilters modoboa-sievefilters modoboa_sievefilters
modoboa.extensions.stats modoboa-stats modoboa_stats
modoboa.extensions.webmail modoboa-webmail modoboa_webmail

Here are the required steps:

1. Install the extensions using pip (look at the second column in the table above):

$ pip install <the extensions you want>

2. Remove south from INSTALLED_APPS

3. Rename old extension names inside MODOBOA_APPS (look at the third column in the table above)

4. Remove modoboa.lib.middleware.ExtControlMiddleware from MIDDLEWARE_CLASSES

5. Change DATABASE_ROUTERS to:

DATABASE_ROUTERS = ["modoboa_amavis.dbrouter.AmavisRouter"]

6. Run the following commands:

$ cd <modoboa_instance_dir>
$ python manage.py migrate

7. Reply yes to the question

8. Run the following commands:

$ python manage.py load_initial_data
$ python manage.py collectstatic

9. The cleanup job has been renamed in Django, so you have to modify your crontab entry:

1.2. Upgrading an existing installation 7

Modoboa Documentation, Release 1.5.2

- 0 0 * * * <modoboa_site>/manage.py cleanup

• 0 0 * * * <modoboa_site>/manage.py clearsessions

1.2.0

A new notification service let administrators know about new Modoboa versions. To activate it, you need to update
the TEMPLATE_CONTEXT_PROCESSORS variable like this:

from django.conf import global_settings

TEMPLATE_CONTEXT_PROCESSORS = global_settings.TEMPLATE_CONTEXT_PROCESSORS + (
'modoboa.core.context_processors.top_notifications',

)

and to define the new MODOBOA_API_URL variable:

MODOBOA_API_URL = 'http://api.modoboa.org/1/'

The location of external static files has changed. To use them, add a new path to the STATICFILES_DIRS:

Additional locations of static files
STATICFILES_DIRS = (

Put strings here, like "/home/html/static" or "C:/www/django/static".
Always use forward slashes, even on Windows.
Don't forget to use absolute paths, not relative paths.
"<path/to/modoboa/install/dir>/bower_components",

)

Run the following commands to define the hostname of your instance:

$ cd <modoboa_instance_dir>
$ python manage.py set_default_site <hostname>

If you plan to use the Radicale extension:

1. Add ’modoboa.extensions.radicale’ to the MODOBOA_APPS variable

2. Run the following commands:

$ cd <modoboa_instance_dir>
$ python manage.py syncdb

Warning: You also have to note that the sitestatic directory has moved from <path to your site’s
dir> to <modoboa’s root url> (it’s probably the parent directory). You have to adapt your web server
configuration to reflect this change.

1.1.7: manual learning for SpamAssassin

A new feature allows administrators and users to manually train SpamAssassin in order to customize its behaviour.

Check Manual SpamAssassin learning to know more about this feature.

1.1.6: Few bugfixes

Catchall aliases were not really functional until this version as they were eating all domain traffic.

8 Chapter 1. Getting started

http://modoboa-amavis.readthedocs.org/en/latest/setup.html#sa-manual-learning

Modoboa Documentation, Release 1.5.2

To fix them, a postfix map file (sql-mailboxes-self-aliases.cf) has been re-introduced and must be listed
into the virtual_alias_maps setting. See Configuration for the order.

1.1.2: Audit trail issues

Update the settings.py file as follows:

1. Remove the ’reversion.middleware.RevisionMiddleware’ middleware from the
MIDDLEWARE_CLASSES variable

2. Add the new ’modoboa.lib.middleware.RequestCatcherMiddleware’ middleware at the end
of the MIDDLEWARE_CLASSES variable

1.1.1: Few bugfixes

For those who installed Dovecot in a non-standard location, it is now possible to tell Modoboa where to find it. Just
define a variable named DOVECOT_LOOKUP_PATH in the settings.py file and include the appropriate lookup
path inside:

DOVECOT_LOOKUP_PATH = ("/usr/sbin/dovecot", "/usr/local/sbin/dovecot")

1.1.0: relay domains and better passwords encryption

Due to code refactoring, some modifications need to be done into settings.py:

1. MODOBOA_APPS must contain the following applications:

MODOBOA_APPS = (
'modoboa',
'modoboa.core',
'modoboa.lib',

'modoboa.extensions.admin',
'modoboa.extensions.limits',
'modoboa.extensions.postfix_autoreply',
'modoboa.extensions.webmail',
'modoboa.extensions.stats',
'modoboa.extensions.amavis',
'modoboa.extensions.sievefilters',

)

2. Add ’modoboa.extensions.postfix_relay_domains’ to MODOBOA_APPS, just before
’modoboa.extensions.limits’

3. AUTH_USER_MODEL must be set to core.User

4. Into LOGGING, replace modoboa.lib.logutils.SQLHandler by
modoboa.core.loggers.SQLHandler

Then, run the following commands to migrate your installation:

$ python manage.py syncdb
$ python manage.py migrate core 0001 --fake
$ python manage.py migrate
$ python manage.py collectstatic

Finally, update both Dovecot and Postfix queries.

1.2. Upgrading an existing installation 9

Modoboa Documentation, Release 1.5.2

1.0.1: operations on mailboxes

The way Modoboa handles rename and delete operations on mailboxes has been improved. Make sure to consult
Operations on the file system and Postfix configuration. Look at the smtpd_recipient_restrictions setting.

Run modoboa-admin.py postfix_maps --dbtype <mysql|postgres|sqlite> <tempdir> and
compare the files with those that postfix currently use. Make necessary updates in light of the differences

1.0.0: production ready, at last

Configuration file update

Several modifications need to be done into settings.py.

1. Add the following import statement:

from logging.handlers import SysLogHandler

2. Set the ALLOWER_HOSTS variable:

ALLOWED_HOSTS = [
'<your server fqdn>',

]

3. Activate the django.middleware.csrf.CsrfViewMiddleware middleware and add the
reversion.middleware.RevisionMiddleware middleware to MIDDLEWARE_CLASSES like
this:

MIDDLEWARE_CLASSES = (
'django.middleware.common.CommonMiddleware',
'django.contrib.sessions.middleware.SessionMiddleware',
'django.middleware.csrf.CsrfViewMiddleware',
'django.contrib.auth.middleware.AuthenticationMiddleware',
'django.contrib.messages.middleware.MessageMiddleware',
'django.middleware.locale.LocaleMiddleware',
Uncomment the next line for simple clickjacking protection:
'django.middleware.clickjacking.XFrameOptionsMiddleware',
'reversion.middleware.RevisionMiddleware',

'modoboa.lib.middleware.AjaxLoginRedirect',
'modoboa.lib.middleware.CommonExceptionCatcher',
'modoboa.lib.middleware.ExtControlMiddleware',

)

4. Add the reversion application to INSTALLED_APPS

5. Remove all modoboa’s application from INSTALLED_APPS and put them into the new MODOBOA_APPS
variable like this:

INSTALLED_APPS = (
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.sites',
'django.contrib.messages',
'django.contrib.staticfiles',
'south',
'reversion',

10 Chapter 1. Getting started

Modoboa Documentation, Release 1.5.2

)

A dedicated place to register Modoboa applications
Do not delete it.
Do not change the order.
MODOBOA_APPS = (

'modoboa',
'modoboa.auth',
'modoboa.admin',
'modoboa.lib',
'modoboa.userprefs',

'modoboa.extensions.limits',
'modoboa.extensions.postfix_autoreply',
'modoboa.extensions.webmail',
'modoboa.extensions.stats',
'modoboa.extensions.amavis',
'modoboa.extensions.sievefilters',

)

INSTALLED_APPS += MODOBOA_APPS

6. Set the AUTH_USER_MODEL variable like this:

AUTH_USER_MODEL = 'admin.User'

7. Modify the logging configuration as follows:

LOGGING = {
'version': 1,
'disable_existing_loggers': False,
'filters': {

'require_debug_false': {
'()': 'django.utils.log.RequireDebugFalse'

}
},
'formatters': {

'syslog': {
'format': '%(name)s: %(levelname)s %(message)s'

},
},
'handlers': {

'mail_admins': {
'level': 'ERROR',
'filters': ['require_debug_false'],
'class': 'django.utils.log.AdminEmailHandler'

},
'console': {

logging handler that outputs log messages to terminal
'class': 'logging.StreamHandler',
#'level': 'DEBUG', # message level to be written to console

},
'syslog-auth': {

'class': 'logging.handlers.SysLogHandler',
'facility': SysLogHandler.LOG_AUTH,
'formatter': 'syslog'

},
'modoboa': {

'class': 'modoboa.lib.logutils.SQLHandler',

1.2. Upgrading an existing installation 11

Modoboa Documentation, Release 1.5.2

}
},
'loggers': {

'django.request': {
'handlers': ['mail_admins'],
'level': 'ERROR',
'propagate': True,

},
'modoboa.auth': {

'handlers': ['syslog-auth', 'modoboa'],
'level': 'INFO',
'propagate': False

},
'modoboa.admin': {

'handlers': ['modoboa'],
'level': 'INFO',
'propagate': False

}
}

}

Postfix and Dovecot configuration update

It is necessary to update the queries used to retrieve users and mailboxes:

1. Run modoboa-admin.py postfix_maps --dbtype <mysql|postgres> <tempdir> and
compare the files with those that postfix currently use. Make necessary updates in light of the differences

2. Into dovecot-sql.conf, update the user_query query, refer to MySQL users or PostgreSQL users

3. Update dovecot’s configuration to activate the new quota related features

Migration issues

When running the python manage.py syncdb --migrate command, you may encounter the following is-
sues:

1. Remove useless content types

If the script asks you this question, just reply no.

2. South fails to migrate reversion

Due to the admin user model change, the script 0001_initial.py may fail. Just deactivate reversion
from INSTALLED_APPS and run the command again. Once done, reactivate reversion and run the com-
mand one last time.

1.3 Configuration

1.3.1 Online parameters

Modoboa provides online panels to modify internal parameters. There are two available levels:

• Application level: global parameters, define how the application behaves. Available at Modoboa > Parameters

• User level: per user customization. Available at User > Settings > Preferences

12 Chapter 1. Getting started

Modoboa Documentation, Release 1.5.2

Regardless level, parameters are displayed using tabs, each tab corresponding to one application.

General parameters

The admin application exposes several parameters, they are presented below:

Name Description Default
value

Authentication type The backend used for authentication Local
Default password
scheme

Scheme used to crypt mailbox passwords crypt

Secret key A key used to encrypt users’ password in sessions random
value

Handle mailboxes on
filesystem

Rename or remove mailboxes on the filesystem when they get renamed or
removed within Modoboa

no

Mailboxes owner The UNIX account who owns mailboxes on the filesystem vmail
Automatic account
removal

When a mailbox is removed, also remove the associated account no

Maximum log record
age

The maximum age in days of a log record 365

Items per page Number of displayed items per page 30
Default top redirection The default redirection used when no application is specified userprefs

Note: If you are not familiar with virtual domain hosting, you should take a look at postfix’s documentation. This
How to also contains useful information.

Note: A random secret key will be generated each time the Parameters page is refreshed and until you save parameters
at least once.

Note: Specific LDAP parameters are also available, see LDAP authentication.

1.3.2 Media files

Modoboa uses a specific directory to upload files (ie. when the webmail is in use) or to create ones (ex: graphical statis-
tics). This directory is named media and is located inside modoboa’s installation directory (called modoboa_site
in this documentation).

To work properly, the system user which runs modoboa (www-data, apache, whatever) must have write access to
this directory.

1.3.3 Customization

Custom logo

You have the possibility to use a custom logo instead of the default one on the login page.

To do so, open the settings.py file and add a MODOBOA_CUSTOM_LOGO variable. This variable must contain
the relative URL of your logo under MEDIA_URL. For example:

1.3. Configuration 13

http://www.postfix.org/VIRTUAL_README.html
https://help.ubuntu.com/community/PostfixVirtualMailBoxClamSmtpHowto

Modoboa Documentation, Release 1.5.2

MODOBOA_CUSTOM_LOGO = os.path.join(MEDIA_URL, "custom_logo.png")

Then copy your logo file into the directory indicated by MEDIA_ROOT.

1.3.4 Host configuration

Note: This section is only relevant when Modoboa handles mailboxes renaming and removal from the filesystem.

To manipulate mailboxes on the filesystem, you must allow the user who runs Modoboa to execute commands as the
user who owns mailboxes.

To do so, edit the /etc/sudoers file and add the following inside:

<user_that_runs_modoboa> ALL=(<mailboxes owner>) NOPASSWD: ALL

Replace values between <> by the ones you use.

1.3.5 Time zone and language

Modoboa is available in many languages.

To specify the default language to use, edit the settings.py file and modify the LANGUAGE_CODE variable:

LANGUAGE_CODE = 'fr' # or 'en' for english, etc.

Note: Each user has the possibility to define the language he prefers.

In the same configuration file, specify the timezone to use by modifying the TIME_ZONE variable. For example:

TIME_ZONE = 'Europe/Paris'

1.3.6 Sessions management

Modoboa uses Django’s session framework to store per-user information.

Few parameters need to be set in the settings.py configuration file to make Modoboa behave as expected:

SESSION_EXPIRE_AT_BROWSER_CLOSE = False # Default value

This parameter is optional but you must ensure it is set to False (the default value).

The default configuration file provided by the modoboa-admin.py command is properly configured.

1.3.7 LDAP

Authentication

Modoboa supports external LDAP authentication using the following extra components:

• Python LDAP client

• Django LDAP authentication backend

14 Chapter 1. Getting started

https://docs.djangoproject.com/en/dev/topics/http/sessions/?from=olddocs
http://www.python-ldap.org/
http://pypi.python.org/pypi/django-auth-ldap

Modoboa Documentation, Release 1.5.2

If you want to use this feature, you must first install those components:

$ pip install python-ldap django-auth-ldap

Then, all you have to do is to modify the settings.py file. Add a new authentication backend to the AUTHENTI-
CATION_BACKENDS variable, like this:

AUTHENTICATION_BACKENDS = (
'modoboa.lib.authbackends.LDAPBackend',
'modoboa.lib.authbackends.SimpleBackend',

)

Finally, go to Modoboa > Parameters > General and set Authentication type to LDAP.

From there, new parameters will appear to let you configure the way Modoboa should connect to your LDAP server.
They are described just below:

Name Description Default
value

Server address The IP address of the DNS name of the LDAP server local-
host

Server port The TCP port number used by the LDAP server 389
Use a secure
connection

Use an SSL/TLS connection to access the LDAP server no

Authentication
method

Choose the authentication method to use Direct
bind

User DN template
(direct bind
mode)

The template used to construct a user’s DN. It should contain one placeholder (ie.
%(user)s)

Bind BN The distinguished name to use when binding to the LDAP server. Leave empty
for an anonymous bind

Bind password The password to use when binding to the LDAP server (with ‘Bind DN’)
Search base The distinguished name of the search base
Search filter An optional filter string (e.g. ‘(objectClass=person)’). In order to be valid, it must

be enclosed in parentheses.
(mail=%(user)s)

Password
attribute

The attribute used to store user passwords user-
Pass-
word

Active Directory Tell if the LDAP server is an Active Directory one no
Administrator
groups

Members of those LDAP Posix groups will be created ad domain administrators.
Use ‘;’ characters to separate groups.

Group type The type of group used by your LDAP directory. Posix-
Group

Groups search
base

The distinguished name of the search base used to find groups

Domain/mailbox
creation

Automatically create a domain and a mailbox when a new user is created just
after the first successful authentication. You will generally want to disable this
feature when the relay domains extension is in use

yes

If you need additional parameters, you will find a detailled documentation here.

Once the authentication is properly configured, the users defined in your LDAP directory will be able to connect to
Modoboa, the associated domain and mailboxes will be automatically created if needed.

The first time a user connects to Modoboa, a local account is created if the LDAP username is a valid email address.
By default, this account belongs to the SimpleUsers group and it has a mailbox.

1.3. Configuration 15

http://packages.python.org/django-auth-ldap/

Modoboa Documentation, Release 1.5.2

To automatically create domain administrators, you can use the Administrator groups setting. If a LDAP user belongs
to one the listed groups, its local account will belong to the DomainAdmins group. In this case, the username is not
necessarily an email address.

Users will also be able to update their LDAP password directly from Modoboa.

Note: Modoboa doesn’t provide any synchronization mechanism once a user is registered into the database. Any
modification done from the directory to a user account will not be reported to Modoboa (an email address change for
example). Currently, the only solution is to manually delete the Modoboa record, it will be recreated on the next user
login.

1.3.8 Database maintenance

Cleaning the logs table

Modoboa logs administrator specific actions into the database. A clean-up script is provided to automatically remove
oldest records. The maximum log record age can be configured through the online panel.

To use it, you can setup a cron job to run every night:

0 0 * * * <modoboa_site>/manage.py cleanlogs
#
Or like this if you use a virtual environment:
0 0 * * * <virtualenv path/bin/python> <modoboa_site>/manage.py cleanlogs

Cleaning the session table

Django does not provide automatic purging. Therefore, it’s your job to purge expired sessions on a regular basis.

Django provides a sample clean-up script: django-admin.py clearsessions. That script deletes any session
in the session table whose expire_date is in the past.

For example, you could setup a cron job to run this script every night:

0 0 * * * <modoboa_site>/manage.py clearsessions
#
Or like this if you use a virtual environment:
0 0 * * * <virtualenv path/bin/python> <modoboa_site>/manage.py clearsessions

16 Chapter 1. Getting started

CHAPTER 2

Plugins

2.1 Amavisd-new frontend

Official documentation.

2.2 Graphical statistics

Official documentation.

2.3 Radicale frontend

Official documentation.

2.4 Postfix auto-reply messages

Official documentation.

2.5 Sieve filters

Official documentation.

2.6 Webmail

Official documentation.

17

http://modoboa-amavis.readthedocs.org
http://modoboa-stats.readthedocs.org
http://modoboa-radicale.readthedocs.org
http://modoboa-postfix-autoreply.readthedocs.org
http://modoboa-sievefilters.readthedocs.org
http://modoboa-webmail.readthedocs.org

Modoboa Documentation, Release 1.5.2

18 Chapter 2. Plugins

CHAPTER 3

Integration with other softwares

3.1 Dovecot and Postfix

3.1.1 Dovecot

Modoboa works better with Dovecot 2.0 so the following documentation is suitable for this combination.

In this section, we assume dovecot’s configuration resides in /etc/dovecot, all pathes will be relative to this
directory.

Mailboxes

First, edit the conf.d/10-mail.conf and set the mail_location variable:

maildir
mail_location = maildir:~/.maildir

Then, edit the inbox namespace and add the following lines:

inbox = yes

mailbox Drafts {
auto = subscribe
special_use = \Drafts

}
mailbox Junk {

auto = subscribe
special_use = \Junk

}
mailbox Sent {

auto = subscribe
special_use = \Sent

}
mailbox Trash {

auto = subscribe
special_use = \Trash

}

With dovecot 2.1+, it ensures all the special mailboxes will be automaticaly created for new accounts.

For dovecot 2.0 and older, use the autocreate plugin.

19

http://wiki2.dovecot.org/Plugins/Autocreate

Modoboa Documentation, Release 1.5.2

Operations on the file system

Warning: Modoboa needs to access the dovecot binary to check its version. To find the bi-
nary path, we use the which command first and then try known locations (/usr/sbin/dovecot and
/usr/local/sbin/dovecot). If you installed dovecot in a custom location, please tell us where the binary
is by using the DOVECOT_LOOKUP_PATH setting (see settings.py).

Three operation types are considered:

1. Mailbox creation

2. Mailbox renaming

3. Mailbox deletion

The first one is managed by Dovecot. The last two ones may be managed by Modoboa if it can access the file system
where the mailboxes are stored (see General parameters to activate this feature).

Those operations are treated asynchronously by a cron script. For example, when you rename an e-mail address
through the web UI, the associated mailbox on the file system is not modified directly. Instead of that, a rename order
is created for this mailbox. The mailbox will be considered unavailable until the order is not executed (see Postfix
configuration).

Edit the crontab of the user who owns the mailboxes on the file system:

$ crontab -u <user> -e

And add the following line inside:

* * * * * python <modoboa_site>/manage.py handle_mailbox_operations

Warning: The cron script must be executed by the system user owning the mailboxes.

Warning: The user running the cron script must have access to the settings.py file of the modoboa instance.

The result of each order is recorded into Modoboa’s log. Go to Modoboa > Logs to consult them.

Authentication

To make the authentication work, edit the conf.d/10-auth.conf and uncomment the following line at the end:

#!include auth-system.conf.ext
!include auth-sql.conf.ext
#!include auth-ldap.conf.ext
#!include auth-passwdfile.conf.ext
#!include auth-checkpassword.conf.ext
#!include auth-vpopmail.conf.ext
#!include auth-static.conf.ext

Then, edit the conf.d/auth-sql.conf.ext file and add the following content inside:

passdb sql {
driver = sql
Path for SQL configuration file, see example-config/dovecot-sql.conf.ext
args = /etc/dovecot/dovecot-sql.conf.ext

}

20 Chapter 3. Integration with other softwares

Modoboa Documentation, Release 1.5.2

userdb sql {
driver = sql
args = /etc/dovecot/dovecot-sql.conf.ext

}

Make sure to activate only one backend (per type) inside your configuration (just comment the other ones).

Edit the dovecot-sql.conf.ext and modify the configuration according to your database engine.

MySQL users

driver = mysql

connect = host=<mysqld socket> dbname=<database> user=<user> password=<password>

default_pass_scheme = CRYPT

password_query = SELECT email AS user, password FROM core_user WHERE email='%u' and is_active=1

user_query = SELECT '<mailboxes storage directory>/%Ld/%Ln' AS home, <uid> as uid, <gid> as gid, concat('*:bytes=', mb.quota, 'M') AS quota_rule FROM admin_mailbox mb INNER JOIN admin_domain dom ON mb.domain_id=dom.id WHERE mb.address='%Ln' AND dom.name='%Ld'

iterate_query = SELECT email AS username FROM core_user WHERE email<>''

PostgreSQL users

driver = pgsql

connect = host=<postgres socket> dbname=<database> user=<user> password=<password>

default_pass_scheme = CRYPT

password_query = SELECT email AS user, password FROM core_user WHERE email='%u' and is_active

user_query = SELECT '<mailboxes storage directory>/%Ld/%Ln' AS home, <uid> as uid, <gid> as gid, '*:bytes=' || mb.quota || 'M' AS quota_rule FROM admin_mailbox mb INNER JOIN admin_domain dom ON mb.domain_id=dom.id WHERE mb.address='%Ln' AND dom.name='%Ld'

iterate_query = SELECT email AS username FROM core_user WHERE email<>''

SQLite users

driver = sqlite

connect = <path to the sqlite db file>

default_pass_scheme = CRYPT

password_query = SELECT email AS user, password FROM core_user WHERE email='%u' and is_active=1

user_query = SELECT '<mailboxes storage directory>/%Ld/%Ln' AS home, <uid> as uid, <gid> as gid, ('*:bytes=' || mb.quota || 'M') AS quota_rule FROM admin_mailbox mb INNER JOIN admin_domain dom ON mb.domain_id=dom.id WHERE mb.address='%Ln' AND dom.name='%Ld'

iterate_query = SELECT email AS username FROM core_user WHERE email<>''

Note: Replace values between <> with yours.

3.1. Dovecot and Postfix 21

Modoboa Documentation, Release 1.5.2

LMTP

Local Mail Transport Protocol is used to let Postfix deliver messages to Dovecot.

First, make sure the protocol is activated by looking at the protocols setting (generally inside dovecot.conf).
It should be similar to the following example:

protocols = imap pop3 lmtp

Then, open the conf.d/10-master.conf, look for lmtp service definition and add the following content inside:

service lmtp {
stuff before
unix_listener /var/spool/postfix/private/dovecot-lmtp {
mode = 0600
user = postfix
group = postfix

}
stuff after

}

We assume here that Postfix is chrooted within /var/spool/postfix.

Finally, open the conf.d/20-lmtp.conf and modify it as follows:

protocol lmtp {
postmaster_address = postmaster@<domain>
mail_plugins = $mail_plugins quota sieve

}

Replace <domain> by the appropriate value.

Note: If you don’t plan to apply quota or to use filters, just adapt the content of the mail_plugins setting.

Quota

Modoboa lets adminstrators define per-domain and/or per-account limits (quota). It also lists the current quota usage
of each account. Those features require Dovecot to be configured in a specific way.

Inside conf.d/10-mail.conf, add the quota plugin to the default activated ones:

mail_plugins = quota

Inside conf.d/10-master.conf, update the dict service to set proper permissions:

service dict {
If dict proxy is used, mail processes should have access to its socket.
For example: mode=0660, group=vmail and global mail_access_groups=vmail
unix_listener dict {
mode = 0600
user = <user owning mailboxes>
#group =

}
}

Inside conf.d/20-imap.conf, activate the imap_quota plugin:

22 Chapter 3. Integration with other softwares

http://en.wikipedia.org/wiki/Local_Mail_Transfer_Protocol

Modoboa Documentation, Release 1.5.2

protocol imap {
...

mail_plugins = $mail_plugins imap_quota

...
}

Inside dovecot.conf, activate the quota SQL dictionary backend:

dict {
quota = <driver>:/etc/dovecot/dovecot-dict-sql.conf.ext

}

Inside conf.d/90-quota.conf, activate the quota dictionary backend:

plugin {
quota = dict:User quota::proxy::quota

}

It will tell Dovecot to keep quota usage in the SQL dictionary.

Finally, edit the dovecot-dict-sql.conf.ext file and put the following content inside:

connect = host=<db host> dbname=<db name> user=<db user> password=<password>
SQLite users
connect = /path/to/the/database.db

map {
pattern = priv/quota/storage
table = admin_quota
username_field = username
value_field = bytes

}
map {

pattern = priv/quota/messages
table = admin_quota
username_field = username
value_field = messages

}

PostgreSQL users

Database schema update The admin_quota table is created by Django but unfortunately it doesn’t support
DEFAULT constraints (it only simulates them when the ORM is used). As PostgreSQL is a bit strict about constraint
violations, you must execute the following query manually:

db=> ALTER TABLE admin_quota ALTER COLUMN bytes SET DEFAULT 0;
db=> ALTER TABLE admin_quota ALTER COLUMN messages SET DEFAULT 0;

Trigger As indicated on Dovecot’s wiki, you need a trigger to properly update the quota.

A working copy of this trigger is available on Modoboa’s website.

Download this file and copy it on the server running postgres. Then, execute the following commands:

3.1. Dovecot and Postfix 23

http://wiki2.dovecot.org/Quota/Dict
http://modoboa.org/resources/modoboa_postgres_trigger.sql

Modoboa Documentation, Release 1.5.2

$ su - postgres
$ psql [modoboa database] < /path/to/modoboa_postgres_trigger.sql
$ exit

Replace [modoboa database] by the appropriate value.

Forcing recalculation

For existing installations, Dovecot (> 2) offers a command to recalculate the current quota usages. For example, if you
want to update all usages, run the following command:

$ doveadm quota recalc -A

Be carefull, it can take a while to execute.

ManageSieve/Sieve

Modoboa lets users define filtering rules from the web interface. To do so, it requires ManageSieve to be activated on
your server.

Inside conf.d/20-managesieve.conf, make sure the following lines are uncommented:

protocols = $protocols sieve

service managesieve-login {
...

}

service managesieve {
...

}

protocol sieve {
...

}

Messages filtering using Sieve is done by the LDA.

Inside conf.d/15-lda.conf, activate the sieve plugin like this:

protocol lda {
Space separated list of plugins to load (default is global mail_plugins).
mail_plugins = $mail_plugins sieve

}

Finally, configure the sieve plugin by editing the conf.d/90-sieve.conf file. Put the follwing caontent inside:

plugin {
Location of the active script. When ManageSieve is used this is actually
a symlink pointing to the active script in the sieve storage directory.
sieve = ~/.dovecot.sieve

#
The path to the directory where the personal Sieve scripts are stored. For
ManageSieve this is where the uploaded scripts are stored.
sieve_dir = ~/sieve

}

24 Chapter 3. Integration with other softwares

Modoboa Documentation, Release 1.5.2

Restart Dovecot.

3.1.2 Postfix

This section gives an example about building a simple virtual hosting configuration with Postfix. Refer to the official
documentation for more explanation.

Map files

You first need to create configuration files (or map files) that will be used by Postfix to lookup into Modoboa tables.

To automaticaly generate the requested map files and store them in a directory, run the following command:

$ modoboa-admin.py postfix_maps --dbtype <mysql|postgres|sqlite> <directory>

<directory> is the directory where the files will be stored. Answer the few questions and you’re done.

Configuration

Use the following configuration in the /etc/postfix/main.cf file (this is just one possible configuration):

Stuff before
virtual_transport = lmtp:unix:private/dovecot-lmtp

relay_domains =
virtual_mailbox_domains = <driver>:/etc/postfix/sql-domains.cf
virtual_alias_domains = <driver>:/etc/postfix/sql-domain-aliases.cf
virtual_alias_maps = <driver>:/etc/postfix/sql-aliases.cf

relay_domains = <driver>:/etc/postfix/sql-relaydomains.cf
transport_maps =

<driver>:/etc/postfix/sql-spliteddomains-transport.cf
<driver>:/etc/postfix/sql-relaydomains-transport.cf

smtpd_recipient_restrictions =
...
check_recipient_access

<driver>:/etc/postfix/sql-maintain.cf
<driver>:/etc/postfix/sql-relay-recipient-verification.cf

permit_mynetworks
reject_unauth_destination
reject_unverified_recipient
...

smtpd_sender_login_maps =
<driver>:/etc/postfix/sql-sender-login-mailboxes.cf
<driver>:/etc/postfix/sql-sender-login-aliases.cf

smtpd_sender_restrictions =
reject_sender_login_mismatch

Stuff after

Replace <driver> by the name of the database you use.

Restart Postfix.

3.1. Dovecot and Postfix 25

http://www.postfix.org/VIRTUAL_README.html
http://www.postfix.org/VIRTUAL_README.html

Modoboa Documentation, Release 1.5.2

3.2 Web servers

3.2.1 Apache2

Note: The following instructions are meant to help you get your site up and running quickly. However it is not
possible for the people contributing documentation to Modoboa to test every single combination of web server, wsgi
server, distribution, etc. So it is possible that your installation of uwsgi or nginx or Apache or what-have-you works
differently. Keep this in mind.

mod_wsgi

First, make sure that mod_wsgi is installed on your server.

Create a new virtualhost in your Apache configuration and put the following content inside:

<VirtualHost *:80>
ServerName <your value>
DocumentRoot <path to your site's dir>

Alias /media/ <path to your site's dir>/media/
<Directory <path to your site's dir>/media>
Order deny,allow
Allow from all

</Directory>

Alias /sitestatic/ <path to your site's dir>/sitestatic/
<Directory <path to your site's dir>/sitestatic>
Order deny,allow
Allow from all

</Directory>

WSGIScriptAlias / <path to your site's dir>/wsgi.py
</VirtualHost>

This is just one possible configuration.

To use mod_wsgi daemon mode, add the two following directives just under WSGIScriptAlias:

WSGIDaemonProcess example.com python-path=<path to your site's dir>:<virtualenv path>/lib/python2.7/site-packages
WSGIProcessGroup example.com

Replace values between <> with yours. If you don’t use a virtualenv, just remove the last part of the
WSGIDaemonProcess directive.

Note: You will certainly need more configuration in order to launch Apache.

3.2.2 Nginx

Note: The following instructions are meant to help you get your site up and running quickly. However it is not
possible for the people contributing documentation to Modoboa to test every single combination of web server, wsgi

26 Chapter 3. Integration with other softwares

http://virtualenv.readthedocs.org/en/latest/

Modoboa Documentation, Release 1.5.2

server, distribution, etc. So it is possible that your installation of uwsgi or nginx or Apache or what-have-you works
differently. Keep this in mind.

This section covers two different ways of running Modoboa behind Nginx using a WSGI application server. Choose
the one you prefer between Green Unicorn or uWSGI.

In both cases, you’ll need to download and install nginx.

Green Unicorn

Firstly, Download and install gunicorn. Then, use the following sample gunicorn configuration (create a new file
named gunicorn.conf.py inside Modoboa’s root dir):

backlog = 2048
bind = "unix:/var/run/gunicorn/modoboa.sock"
pidfile = "/var/run/gunicorn/modoboa.pid"
daemon = True
debug = False
workers = 2
logfile = "/var/log/gunicorn/modoboa.log"
loglevel = "info"

To start gunicorn, execute the following commands:

$ cd <modoboa dir>
$ gunicorn -c gunicorn.conf.py <modoboa dir>.wsgi:application

Now the nginx part. Just create a new virtual host and use the following configuration:

upstream modoboa {
server unix:/var/run/gunicorn/modoboa.sock fail_timeout=0;

}

server {
listen 443 ssl;
ssl on;
keepalive_timeout 70;

server_name <host fqdn>;
root <modoboa's root dir>;

access_log /var/log/nginx/<host fqdn>.access.log;
error_log /var/log/nginx/<host fqdn>.error.log;

ssl_certificate <ssl certificate for your site>;
ssl_certificate_key <ssl certificate key for your site>;

location /sitestatic/ {
autoindex on;

}

location /media/ {
autoindex on;

}

location / {
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_set_header Host $http_host;

3.2. Web servers 27

http://nginx.org/
http://gunicorn.org/
https://github.com/unbit/uwsgi
http://wiki.nginx.org/Install
http://gunicorn.org/install.html

Modoboa Documentation, Release 1.5.2

proxy_redirect off;
proxy_set_header X-Forwarded-Protocol ssl;
proxy_pass http://modoboa;

}
}

If you do not plan to use SSL then change the listen directive to listen 80; and delete each of the following
directives:

ssl on;
keepalive_timeout 70;
ssl_certificate <ssl certificate for your site>;
ssl_certificate_key <ssl certificate key for your site>;
proxy_set_header X-Forwarded-Protocol ssl;

If you do plan to use SSL, you’ll have to generate a certificate and a key. This article contains information about how
to do it.

Paste this content to your configuration (replace values between <> with yours), restart nginx and enjoy a really fast
application!

uWSGI

The following setup is meant to get you started quickly. You should read the documentation of both nginx and uwsgi
to understand how to optimize their configuration for your site.

The Django documentation includes the following warning regarding uwsgi:

Warning: Some distributions, including Debian and Ubuntu, ship an outdated version of uWSGI that does not
conform to the WSGI specification. Versions prior to 1.2.6 do not call close on the response object after handling
a request. In those cases the request_finished signal isn’t sent. This can result in idle connections to database and
memcache servers.

Use uwsgi 1.2.6 or newer. If you do not, you will run into problems. Modoboa will fail in obscure ways.

To use this setup, first download and install uwsgi.

Here is a sample nginx configuration:

server {
listen 443 ssl;
ssl on;
keepalive_timeout 70;

server_name <host fqdn>;
root <modoboa's settings dir>;

ssl_certificate <ssl certificate for your site>;
ssl_certificate_key <ssl certificate key for your site>;

access_log /var/log/nginx/<host fqdn>.access.log;
error_log /var/log/nginx/<host fqdn>.error.log;

location <modoboa's root url>/sitestatic/ {
autoindex on;
alias <location of sitestatic on your file system>;

}

28 Chapter 3. Integration with other softwares

http://wiki.nginx.org/HttpSslModule#Generate_Certificates
http://uwsgi-docs.readthedocs.org/en/latest/WSGIquickstart.html

Modoboa Documentation, Release 1.5.2

Whether or not Modoboa uses a media directory depends on how
you configured Modoboa. It does not hurt to have this.
location <modoboa's root url>/media/ {

autoindex on;
alias <location of media on your file system>;

}

This denies access to any file that begins with
".ht". Apache's .htaccess and .htpasswd are such files. A
Modoboa installed from scratch would not contain any such
files, but you never know what the future holds.
location ~ /\.ht {

deny all;
}

location <modoba's root url>/ {
include uwsgi_params;
uwsgi_pass <uwsgi port>;
uwsgi_param UWSGI_SCRIPT <modoboa instance name>.wsgi:application;
uwsgi_param UWSGI_SCHEME https;

}
}

<modoboa instance name> must be replaced by the value you used when you deployed your instance.

If you do not plan to use SSL then change the listen directive to listen 80; and delete each of the following
directives:

ssl on;
keepalive_timeout 70;
ssl_certificate <ssl certificate for your site>;
ssl_certificate_key <ssl certificate key for your site>;
uwsgi_param UWSGI_SCHEME https;

If you do plan to use SSL, you’ll have to generate a certificate and a key. This article contains information about how
to do it.

Make sure to replace the <...> in the sample configuration with appropriate values. Here are some explanations for
the cases that may not be completely self-explanatory:

<modoboa’s settings dir> Where Modoboa’s settings.py resides. This is also where the
sitestatic and media directories reside.

<modoboa’s root url> This is the URL which will be the root of your Modoboa site at your domain. For in-
stance, if your Modoboa installation is reachable at at https://foo/modoboa then <modoboa’s root
url> is /modoboa. In this case you probably also have to set the alias directives to point to where Mod-
oboa’s sitestatic and media directories are because otherwise nginx won’t be able to find them.

If Modoboa is at the root of your domain, then <modoboa root url> is an empty string and can be deleted
from the configuration above. In this case, you probably do not need the alias directives.

<uwsgi port> The location where uwsig is listening. It could be a unix domain socket or an address:port combi-
nation. Ubuntu configures uwsgi so that the port is:

unix:/run/uwsgi/app/<app name>/socket

where <app name> is the name of the application.

Your uwsgi configuration should be:

3.2. Web servers 29

http://wiki.nginx.org/HttpSslModule#Generate_Certificates

Modoboa Documentation, Release 1.5.2

[uwsgi]
Not needed when using uwsgi from pip
plugins = python
chdir = <modoboa's top dir>
module = <name>.wsgi:application
master = true
harakiri = 60
processes = 4
vhost = true
no-default-app = true

The plugins directive should be turned on if you use a uwsgi installation that requires it. If uwsgi was installed from
pip, it does not require it. In the configuration above:

<modoboa’s top dir> The directory where manage.py resides. This directory is the parent of <modoboa’s
settings dir>

<name> The name that you passed to modoboa-admin.py deploy when you created your Modoboa instance.

30 Chapter 3. Integration with other softwares

CHAPTER 4

Extending Modoboa

4.1 Development recipes for Modoboa

You would like to work on Modoboa but you don’t know where to start? You’re at the right place! Browse this page
to learn useful tips.

4.1.1 Prepare a virtual environment

A virtual environment is a good way to setup a development environment on your machine.

Note: virtualenv is available on all major distributions, just install it using your favorite packages manager.

To do so, run the following commands:

$ virtualenv <path>
$ source <path>/bin/activate
$ git clone https://github.com/tonioo/modoboa.git
$ cd modoboa
$ python setup.py develop

The develop command creates a symbolic link to your local copy so any modification you make will be automati-
cally available in your environment, no need to copy them.

4.1.2 Deploy an instance for development

Warning: Make sure to create a database before running this step.

Now that you have a running environment, you’re ready to deploy a test instance:

$ modoboa-admin.py deploy --devel --dburl <database url> <path>
$ cd <path>
$ python manage.py runserver

You’re ready to go!

31

http://virtualenv.readthedocs.org/en/latest/

Modoboa Documentation, Release 1.5.2

4.1.3 Manage static files

Modoboa uses bower (thanks to django-bower) to manage its CSS and javascript dependencies.

Those dependencies are listed in a file called dev_settings.py located inside the
<path_to_local_copy>/modoboa/core directory.

If you want to add a new dependency, just complete the BOWER_INSTALLED_APPS parameter and run the following
command:

$ python manage.py bower install

It will download and store the required files into the <path_to_local_copy>/modoboa/bower_components
directory.

4.1.4 FAQ

bower command is missing in manage.py

bower command is missing in manage.py if you don’t use the --devel option of the modoboa-admin.py
deploy command.

To fix it, regenerate your instance or update your settings.py file manually. Look at devmode in
https://github.com/tonioo/modoboa/blob/master/modoboa/core/commands/templates/settings.py.tpl

4.2 Adding a new plugin

4.2.1 Introduction

Modoboa offers a plugin API to expand its capabilities. The current implementation provides the following possibili-
ties:

• Expand navigation by adding entry points to your plugin inside the GUI

• Access and modify administrative objects (domains, mailboxes, etc.)

• Register callback actions for specific events

Plugins are nothing more than Django applications with an extra piece of code that integrates them into Modoboa. The
modo_extension.py file will contain a complete description of the plugin:

• Admin and user parameters

• Observed events

• Custom menu entries

The communication between both applications is provided by Available events. Modoboa offers some kind of hooks
to let plugin add custom actions.

The following subsections describe plugin architecture and explain how you can create your own plugin.

4.2.2 The required glue

To create a new plugin, just start a new django application like this (into Modoboa’s directory):

32 Chapter 4. Extending Modoboa

http://bower.io/
https://github.com/nvbn/django-bower
https://github.com/tonioo/modoboa/blob/master/modoboa/core/commands/templates/settings.py.tpl

Modoboa Documentation, Release 1.5.2

$ python manage.py startapp

Then, you need to register this application using the provided API. Just copy/paste the following example into the
modo_extension.py file of the future extension:

from modoboa.core.extensions import ModoExtension, exts_pool

class MyExtension(ModoExtension):

"""My custom Modoboa extension."""

name = "myext"
label = "My Extension"
version = "0.1"
description = "A description"
url = "myext_root_location" # optional, name is used if not defined

def load(self):
"""This method is called when Modoboa loads available and activated plugins.

Declare parameters and register events here.
"""
pass

def load_initial_data(self):
"""Optional: provide initial data for your extension here."""
pass

exts_pool.register_extension(MyExtension)

Once done, simply add your extension’s module name to the MODOBOA_APPS variable located inside
settings.py. Finally, run the following commands:

$ python manage.py migrate
$ python manage.py load_initial_data
$ python manage.py collectstatic

4.2.3 Parameters

A plugin can declare its own parameters. There are two levels available:

• ‘Administration’ parameters : used to configure the plugin, editable inside the Admin > Settings > Parameters
page,

• ‘User’ parameters : per-user parameters (or preferences), editable inside the Options > Preferences page.

Playing with parameters

To declare a new administration parameter, use the following function:

from modoboa.lib import parameters

parameters.register_admin(name, **kwargs)

To declare a new user parameter, use the following function:

4.2. Adding a new plugin 33

Modoboa Documentation, Release 1.5.2

parameter.register_user(name, **kwargs)

Both functions accept extra arguments listed here:

• type : parameter’s type, possible values are : int, string, list, list_yesno,

• deflt : default value,

• help : help text,

• values : list of possible values if type is list.

4.2.4 Custom administrative roles

Modoboa uses Django’s internal permission system. Administrative roles are nothing more than groups (Group
instances).

If an extension needs to add new roles, the following steps are required:

1. Listen to the GetExtraRoles event that will return the group’s name

2. Listen to the GetExtraRolePermissions event that will return the new group’s permissions

The group will automatically be created the next time you run the load_initial_data command.

4.2.5 Extending admin forms

the forms used to edit objects (account, domain, etc.) through the admin panel are composed of tabs. You can extend
those forms (ie. add new tabs) in a pretty easy way by defining events.

Account

To add a new tab to the account edition form, define new listeners (handlers) for the following events:

• ExtraAccountForm

• FillAccountInstances

• CheckExtraAccountForm (optional)

Example:

from modoboa.lib import events

@events.observe("ExtraAccountForm")
def extra_account_form(user, account=None):

return [
{"id": "tabid", "title": "Title", "cls": MyFormClass}

]

@events.observe("FillAccountInstances")
def fill_my_tab(user, account, instances):

instances["id"] = my_instance

34 Chapter 4. Extending Modoboa

Modoboa Documentation, Release 1.5.2

Domain

To add a new tab to the domain edition form, define new listeners (handlers) for the following events:

• ExtraDomainForm

• FillDomainInstances

Example:

from modoboa.lib import events

@events.observe("ExtraDomainForm")
def extra_domain_form(user, domain):

return [
{"id": "tabid", "title": "Title", "cls": MyFormClass}

]

@events.observe("FillDomainInstances")
def fill_my_tab(user, domain, instances):

instances["id"] = my_instance

4.3 Available events

4.3.1 Introduction

Modoboa provides a simple API to interact with events. It understands two kinds of events:

• Those returning a value

• Those returning nothing

Listening to a specific event is achieved as follows:

from modoboa.lib import events

def callback(*args):
pass

events.register('event', callback)

You can also use the custom decorator events.observe:

@events.observe('event')
def callback(*args):
pass

event is the event’s name you want to listen to, callback is the function that will be called each time this event is
raised. Each event impose to callbacks a specific prototype to respect. See below for a detailled list.

To stop listening to as specific event, you must use the unregister function:

events.unregister('event', callback)

The parameters are the same than those used with register.

To unregister all events declared by a specific extension, use the unregister_extension function:

4.3. Available events 35

Modoboa Documentation, Release 1.5.2

events.unregister_extension([name])

name is the extension’s name but it is optional. Leave it empty to let the function guess the name.

Read further to get a complete list and description of all available events.

4.3.2 Supported events

AccountAutoCreated

Raised when a new account is automatically created (example: LDAP synchronization).

Callback prototype:

def callback(account): pass

• account is the newly created account (User instance)

AccountCreated

Raised when a new account is created.

Callback prototype:

def callback(account): pass

• account is the newly created account (User instance)

AccountDeleted

Raised when an existing account is deleted.

Callback prototype:

def callback(account, byuser, **options): pass

• account is the account that is going to be deleted

• byuser is the adminstrator deleting account

AccountExported

Raised when an account is exported to CSV.

Callback prototype:

def callback(account): pass

• account is the account being exported

Must return a list of values to include in the export.

36 Chapter 4. Extending Modoboa

Modoboa Documentation, Release 1.5.2

AccountImported

Raised when an account is imported from CSV.

Callback prototype:

def callback(user, account, row): pass

• user is the user importing the account

• account is the account being imported

• row is a list containing what remains from the CSV definition

AccountModified

Raised when an existing account is modified.

Callback prototype:

def callback(oldaccount, newaccount): pass

• oldaccount is the account before it is modified

• newaccount is the account after the modification

AdminMenuDisplay

Raised when an admin menu is about to be displayed.

Callback prototype:

def callback(target, user): pass

The target argument indicates which menu is being displayed. Possible values are:

• admin_menu_box : corresponds to the menu bar available inside administration pages

• top_menu : corresponds to the top black bar

See UserMenuDisplay for a description of what callbacks that listen to this event must return.

CheckDomainName

Raised before the unicity of a domain name is checked. By default, modoboa prevents duplicate names between
domains and domain aliases but extensions have the possibility to extend this rule using this event.

Callback prototype:

def callback(): pass

Must return a list of 2uple, each one containing a model class and an associated label.

CheckExtraAccountForm

When an account is being modified, this event lets extensions check if this account is concerned by a specific form.

Callback prototype:

4.3. Available events 37

Modoboa Documentation, Release 1.5.2

def callback(account, form): pass

• account is the User instance beeing modified

• form is a dictionnary (same content as for ExtraAccountForm)

Callbacks listening to this event must return a list containing one Boolean.

DomainAliasCreated

Raised when a new domain alias is created.

Callback prototype:

def callback(user, domain_alias): pass

• user is the new domain alias owner (User instance)

• domain_alias is the new domain alias (DomainAlias instance)

DomainAliasDeleted

Raised when an existing domain alias is about to be deleted.

Callback prototype:

def callback(domain_alias): pass

• domain_alias is a DomainAlias instance

DomainCreated

Raised when a new domain is created.

Callback prototype:

def callback(user, domain): pass

• user corresponds to the User object creating the domain (its owner)

• domain is a Domain instance

DomainDeleted

Raised when an existing domain is about to be deleted.

Callback prototype:

def callback(domain): pass

• domain is a Domain instance

38 Chapter 4. Extending Modoboa

Modoboa Documentation, Release 1.5.2

DomainModified

Raised when a domain has been modified.

Callback prototype:

def callback(domain): pass

• domain is the modified Domain instance, it contains an extra oldname field which contains the old name

DomainOwnershipRemoved

Raised before the ownership of a domain is removed from its original creator.

Callback prototype:

def callback(owner, domain): pass

• owner is the original creator

• domain is the Domain instance being modified

ExtraAccountActions

Raised when the account list is displayed. Let developers define new actions to act on a specific user.

Callback prototype:

def callback(account): pass

• account is the account being listed

ExtraAccountForm

Let extensions add new forms to the account edition form (the one with tabs).

Callback prototype:

def callback(user, account): pass

• user is a User instance corresponding to the currently logged in user

• account is the account beeing modified (User instance)

Callbacks listening to the event must return a list of dictionnaries, each one must contain at least three keys:

{"id" : "<the form's id>",
"title" : "<the title used to present the form>",
"cls" : TheFormClassName}

ExtraAdminContent

Let extensions add extra content into the admin panel.

Callback prototype:

def callback(user, target, currentpage): pass

4.3. Available events 39

Modoboa Documentation, Release 1.5.2

• user is a User instance corresponding to the currently logged in user

• target is a string indicating the place where the content will be displayed. Possible values are : leftcol

• currentpage is a string indicating which page (or section) is displayed. Possible values are : domains,
identities

Callbacks listening to this event must return a list of string.

ExtraDomainEntries

Raised to request extra entries to display inside the domains listing.

Callback prototype:

def callback(user, domfilter, searchquery, **extrafilters): pass

• user is the User instance corresponding to the currently logged in user

• domfilter is a string indicating which domain type the user needs

• searchquery is a string containing a search query

• extrafilters is a set of keyword arguments that may contain additional filters

Must return a valid QuerySet.

ExtraDomainFilters

Raised to request extra filters for the domains listing page. For example, the postfix_relay_domains extension let users
filter entries based on service types.

Callback prototype:

def callback(): pass

Must return a list of valid filter names (string).

ExtraDomainForm

Let extensions add new forms to the domain edition form (the one with tabs).

Callback prototype:

def callback(user, domain): pass

• user is a User instance corresponding to the currently logged in user

• domain is the domain beeing modified (Domain instance)

Callbacks listening to the event must return a list of dictionnaries, each one must contain at least three keys:

{"id" : "<the form's id>",
"title" : "<the title used to present the form>",
"cls" : TheFormClassName}

40 Chapter 4. Extending Modoboa

Modoboa Documentation, Release 1.5.2

ExtraDomainImportHelp

Raised to request extra help text to display inside the domain import form.

Callback prototype:

def callback(): pass

Must return a list a string.

ExtraDomainMenuEntries

Raised to request extra entries to include in the left menu of the domains listing page.

Callback prototype:

def callback(user): pass

• user is the User instance corresponding to the currently logged in user

Must return a list of dictionaries. Each dictionary must contain at least three keys:

{"name": "<menu name>",
"label": "<menu label>",
"url": "<menu url>"}

ExtraFormFields

Raised to request extra fields to include in a django form.

Callback prototype:

def callback(form_name, instance=None): pass

• form_name is a string used to distinguish a specific form

• instance is a django model instance related to form_name

Must return a list of 2uple, each one containing the following information:

('field name', <Django form field instance>)

ExtraRelayDomainForm

Let extensions add new forms to the relay domain edition form (the one with tabs).

Callback prototype:

def callback(user, rdomain): pass

• user is the User instance corresponding to the currently logged in user

• rdomain is the relay domain being modified (RelayDomain instance)

Callbacks listening to the event must return a list of dictionnaries, each one must contain at least three keys:

{"id" : "<the form's id>",
"title" : "<the title used to present the form>",
"cls" : TheFormClassName}

4.3. Available events 41

Modoboa Documentation, Release 1.5.2

FillAccountInstances

When an account is beeing modified, this event is raised to fill extra forms.

Callback prototype:

def callback(user, account, instances): pass

• user is a User instance corresponding to the currently logged in user

• account is the User instance beeing modified

• instances is a dictionnary where the callback will add information needed to fill a specific form

FillDomainInstances

When a domain is beeing modified, this event is raised to fill extra forms.

Callback prototype:

def callback(user, domain, instances): pass

• user is a User instance corresponding to the currently logged in user

• domain is the Domain instance beeing modified

• instances is a dictionnary where the callback will add information needed to fill a specific form

FillRelayDomainInstances

When a relay domain is being modified, this event is raised to fill extra forms.

Callback prototype:

def callback(user, rdomain, instances): pass

• user is the User instance corresponding to the currently logged in user

• rdomain is the RelayDomain instance being modified

• instances is a dictionnary where the callback will add information needed to fill a specific form

GetAnnouncement

Some places in the interface let plugins add their own announcement (ie. message).

Callback prototype:

def callback(target): pass

• target is a string indicating the place where the announcement will appear:

• loginpage : corresponds to the login page

Callbacks listening to this event must return a list of string.

42 Chapter 4. Extending Modoboa

Modoboa Documentation, Release 1.5.2

GetDomainActions

Raised to request the list of actions available for the domains listing entry being displayed.

Callback prototype:

def callback(user, rdomain): pass

• user is the User instance corresponding to the currently logged in user

• rdomain is the RelayDomain instance being displayed

Must return a list of dictionaries, each dictionary containing at least the following entries:

{"name": "<action name>",
"url": "<action url>",
"title": "<action title>",
"img": "<action icon>"}

GetDomainModifyLink

Raised to request the modification url of the domains listing entry being displayed.

Callback prototype:

def callback(domain): pass

• domain is a model instance (RelayDomain for example)

Must return a dictionary containing at least the following entry:

{'url': '<modification url>'}

GetExtraLimitTemplates

Raised to request extra limit templates. For example, the postfix_relay_domains extension define a template to limit
the number of relay domains an administrator can create.

Callback prototype:

def callback(): pass

Must return a list of set. Each set must contain at least three entries:

[('<limit_name>', '<limit label>', '<limit help text>')]

GetExtraParameters

Raised to request extra parameters for a given parameters form.

Callback prototype:

def callback(application, level): pass

• application is the name of the form’s application (ie. admin, amavis, etc.)

• level is the form’s level: A for admin or U for user

Must return a dictionary. Each entry must be a valid Django form field.

4.3. Available events 43

Modoboa Documentation, Release 1.5.2

GetExtraRolePermissions

Let extensions define new permissions for a given role.

Callback prototype:

def callback(rolename): pass

• rolename is the role’s name (str)

Callbacks listening to this event must return a list of list. The second list level must contain exactly 3 strings: the
application name, the model name and the permission name. Example:

[
["core", "user", "add_user"],
["core", "user", "change_user"],
["core", "user", "delete_user"],

]

GetExtraRoles

Let extensions define new administrative roles (will be used to create or modify an account).

Callback prototype:

def callback(user, account): pass

• user is a User instance corresponding to the currently logged in user

• account is the account being modified (None on creation)

Callbacks listening to this event must return a list of 2uple (two strings) which respect the following format: (value,
label).

GetStaticContent

Let extensions add static content (ie. CSS or javascript) to default pages. It is pretty useful for functionalities that
don’t need a template but need javascript stuff.

Callback prototype:

def callback(caller, st_type, user): pass

• caller is name of the application (or the location) responsible for the call

• st_type is the expected static content type (css or js)

• user is a User instance corresponding to the currently logged in user

Callbacks listening to this event must return a list of string.

ImportObject

Raised to request the function handling an object being imported from CSV.

Callback prototype:

def callback(objtype): pass

44 Chapter 4. Extending Modoboa

Modoboa Documentation, Release 1.5.2

objtype is the type of object being imported

Must return a list of function. A valid import function must respect the following prototype:

def import_function(user, row, formopts): pass

• user is the User instance corresponding to the currently logged in user

• row is a string containing the object’s definition (CSV format)

• formopts is a dictionary that may contain options

InitialDataLoaded

Raised a initial data has been loaded for a given extension.

Callback prototype:

def callback(extname); pass

``extname`` is the extension name (str)

MailboxAliasCreated

Raised when a new mailbox alias is created.

Callback prototype:

def callback(user, mailbox_alias): pass

• user is the new domain alias owner (User instance)

• mailbox_alias is the new mailbox alias (Alias instance)

MailboxAliasDeleted

Raised when an existing mailbox alias is about to be deleted.

Callback prototype:

def callback(mailbox_alias): pass

• mailbox_alias is an Alias instance

MailboxCreated

Raised when a new mailbox is created.

Callback prototype:

def callback(user, mailbox): pass

• user is the new mailbox’s owner (User instance)

• mailbox is the new mailbox (Mailbox instance)

4.3. Available events 45

Modoboa Documentation, Release 1.5.2

MailboxDeleted

Raised when an existing mailbox is about to be deleted.

Callback prototype:

def callback(mailbox): pass

• mailbox is a Mailbox instance

MailboxModified

Raised when an existing mailbox is modified.

Callback prototype:

def callback(mailbox): pass

• mailbox is the Mailbox modified instance. It contains a old_full_address extra field to check if the
address was modified.

PasswordChange

Raised just before a password change action.

Callback prototype:

def callback(user): pass

• user is a User instance

Callbacks listening to this event must return a list containing either True or False. If at least one True is returned,
the password change will be cancelled (ie. changing the password for this user is disabled).

TopNotifications

Lets extensions subscribe to the global notification service (located inside the top bar).

Callback prototype:

def callback(user, include_all): pass

• request is a Request instance

• include_all is a boolean indicating if empty notifications must be included into the result or not

Callbacks listening to this event must return a list of dictionary, each dictionary containing at least the following
entries:

{"id": "<notification entry ID>",
"url": "<associated URL>",
"text": "<text to display>"}

If your notification needs a counter, you can specify it by adding the two following entries in the dictionary:

{“counter”: <associated counter>, “level”: “<info|success|warning|error>”}

46 Chapter 4. Extending Modoboa

Modoboa Documentation, Release 1.5.2

UserLogin

Raised when a user logs in.

Callback prototype:

def callback(request, username, password): pass

UserLogout

Raised when a user logs out.

Callback prototype:

def callback(request): pass

UserMenuDisplay

Raised when a user menu is about to be displayed.

Callback prototype:

def callback(target, user): pass

The target argument indicates which menu is being displayed. Possible values are:

• options_menu: corresponds to the top-right user menu

• uprefs_menu: corresponds to the menu bar available inside the User preferences page

• top_menu: corresponds to the top black bar

All the callbacks that listen to this event must return a list of dictionnaries (corresponding to menu entries). Each
dictionnary must contain at least the following keys:

{"name" : "a_name_without_spaces",
"label" : _("The menu label"),
"url" : reverse("your_view")}

RelayDomainAliasCreated

Raised when a new relay domain alias is created.

Callback prototype:

def callback(user, rdomain_alias): pass

• user is the new relay domain alias owner (User instance)

• rdomain_alias is the new relay domain alias (DomainAlias instance)

RelayDomainAliasDeleted

Raised when an existing relay domain alias is about to be deleted.

Callback prototype:

4.3. Available events 47

Modoboa Documentation, Release 1.5.2

def callback(rdomain_alias): pass

• rdomain_alias is a RelayDomainAlias instance

RelayDomainCreated

Raised when a new relay domain is created.

Callback prototype:

def callback(user, rdomain): pass

• user corresponds to the User object creating the relay domain (its owner)

• rdomain is a RelayDomain instance

RelayDomainDeleted

Raised when an existing relay domain is about to be deleted.

Callback prototype:

def callback(rdomain): pass

• rdomain is a RelayDomain instance

RelayDomainModified

Raised when a relay domain has been modified.

Callback prototype:

def callback(rdomain): pass

• rdomain is the modified RelayDomain instance, it contains an extra oldname field which contains the
old name

RoleChanged

Raised when the role of an account is about to be changed.

Callback prototype:

def callback(account, role): pass

• account is the account being modified

• role is the new role (string)

SaveExtraFormFields

Raised to save extra fields declared using ExtraFormFields.

Callback prototype:

48 Chapter 4. Extending Modoboa

Modoboa Documentation, Release 1.5.2

def callback(form_name, instance, values): pass

• form_name is a string used to distinguish a specific form

• instance is a django model instance related to form_name

• values is a dictionary containing the form’s values

UserCanSetRole

Raised to check if a user is allowed to set a given role to an account.

Callback prototype:

def callback(user, role, account): pass

• user is the User instance corresponding to the currently logged in user

• role is the role user tries to set

• account is the account being modified (None on creation)

Must return a list containing True or False to indicate if this user can is allowed to set role.

4.3. Available events 49

Modoboa Documentation, Release 1.5.2

50 Chapter 4. Extending Modoboa

CHAPTER 5

Additional resource

5.1 Tools for migration

5.1.1 Migrate existing IMAP accounts

OfflineIMAP extension.

5.1.2 PostfixAdmin

Official repository.

5.2 Using the virtual machine

5.2.1 Introduction

A virtual machine with a ready-to-use Modoboa setup is available here. It is composed of the following components:

• Debian 6.0 (squeeze)

• Modoboa and its prerequisites

• MySQL

• Postfix

• Dovecot

• nginx and gunicorn

Actually, it is the result you obtain if you follow the official documentation.

The disk image is using the VMDK format and is compressed using bzip2. To decompress it, just run the following
command:

$ bunzip2 modoboa.vmdk.bz2

If you can’t use the vmdk format, you can use qemu to convert it to another one. For example:

$ qemu-img convert modoboa.vmdk -O qcow2 modoboa.qcow2

51

https://github.com/modoboa/modoboa-imap-migration
https://github.com/modoboa/modoboa-pfxadmin-migrate
http://modoboa.org/resources/modoboa.vmdk.bz2
http://en.wikipedia.org/wiki/VMDK
http://qemu.org/

Modoboa Documentation, Release 1.5.2

Then, just use your prefered virtualization software (qemu, kvm, virtualbox, etc.) to start the machine. You’ll need to
configure at least one bridged network interface if you want to be able to play with Modoboa, ie. your machine must
be visible from your network.

The default network interface of the machine (eth0) is configured to use the DHCP protocol.

5.2.2 Connect to the machine

The following UNIX users are available if you want to connect to the system:

Login Password Description
root demo the root user
demo demo an unpriviliged user

To connect to Modoboa, first connect to the system and retrieve its current network address like this:

$ /sbin/ifconfig eth0

Once you know its address, open a web browser and go to this url:

http://<ip_address>/admin/

You should see the login page. Here are the users available by default:

Login Pass-
word

Capabitilies

admin password Default super administrator. Can do anything on the admin but can’t access
applications

ad-
min@demo.local

admin Administrator of the domain demo.local. Can administrater its domain and access
to applications.

user@demo.local user Simple user. Can access to applications.

52 Chapter 5. Additional resource

mailto:admin@demo.local
mailto:admin@demo.local
mailto:user@demo.local

	Getting started
	Installation
	Upgrading an existing installation
	Configuration

	Plugins
	Amavisd-new frontend
	Graphical statistics
	Radicale frontend
	Postfix auto-reply messages
	Sieve filters
	Webmail

	Integration with other softwares
	Dovecot and Postfix
	Web servers

	Extending Modoboa
	Development recipes for Modoboa
	Adding a new plugin
	Available events

	Additional resource
	Tools for migration
	Using the virtual machine

