

 Navigation

 	
 index

 	
 next |

 	Modoboa 0.9.5 documentation

Modoboa’s documentation!

This documentation refers to version 0.9.5.

Getting started

	Installation
	Requirements

	Get Modoboa

	Database

	Deployment

	First use

	Upgrading an existing installation
	Latest version

	Modoboa 0.9 and prior

	Configuration
	Online parameters

	Host configuration

	Time zone and language

	Sessions management

	External authentication

	Using plugins
	Enable or disable a plugin

	Per-admin limits

	Amavisd-new frontend

	Graphical statistics

	Postifx auto-reply messages

	Sieve filters

	Webmail

Integration with other softwares

	SMTP servers
	Postfix

	IMAP servers
	Dovecot

	Web servers
	Apache2

	Nginx

Extending Modoboa

	Adding a new plugin
	Introduction

	The required glue

	Parameters

	Custom administrative roles

	Available events
	Introduction

	Supported events

Additional resource

	Migrating from other software
	PostfixAdmin

	Using the virtual machine
	Introduction

	Connect to the machine

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2013, Antoine Nguyen.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	0.9.5

 Installation

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Modoboa 0.9.5 documentation

Installation

Requirements

	Python version 2.6+ [http://python.org/]

	Django version 1.3+ [http://docs.djangoproject.com/en/dev/intro/install/#intro-install]

	south version 0.7+ [http://south.aeracode.org/]

	lxml python module [http://codespeak.net/lxml/]

	pycrypto python module [http://www.dlitz.net/software/pycrypto/]

	rrdtool python binding [http://oss.oetiker.ch/rrdtool/]

	sievelib python module [http://pypi.python.org/pypi/sievelib]

	chardet python module [http://pypi.python.org/pypi/chardet]

	argparse python module [http://pypi.python.org/pypi/argparse]

Get Modoboa

You can choose between two options:

	Use the Python package available on the PyPI [http://pypi.python.org/pypi]

	Download the sources tarball

The easiest one is to install it from the PyPI. Just run the
following command and you’re done:

$ pip install modoboa

If you prefer to use the tarball, download the latest one and run the
following procedure:

$ tar xzf modoboa-<version>.tar.gz
$ cd modoboa-<version>
$ python setup.py install

All dependencies will be installed regardless the way you chose. The
only exception concerns the RRDtool binding because there isn’t any
python package available, it is directly provided with the official
tarball.

Fortunately, all major distributions include a ready-to-use
package. On Debian/Ubuntu:

$ apt-get install python-rrdtool

Database

Thanks to django, Modoboa supports several databases. Depending on
the one you will use, you must install the appropriate python package:

	mysqldb [http://mysql-python.sourceforge.net/] for MySQL [http://www.mysql.com]

	psycopg2 [http://initd.org/psycopg/] for PostgreSQL [http://www.postgresql.org]

Then, create a user and a database that will be used by Modoboa. Make
sure your database is using UTF8 as a default charset.

Deployment

Automatic

modoboa-admin.py, a command line tool, let you deploy a
ready-to-use Modoboa site using only one instruction:

$ modoboa-admin.py deploy modoboa_example --syncdb --collectstatic [--with-amavis]

Just answer the few questions and you’re done. You can now go to the
First use section.

Note

The –with-amavis option must be set only if you intend to use
the Amavisd-new frontend.

Manual

As Modoboa is a set of Django applications, you need to create a new
project. Just run the following commands:

$ cd /var/www
$ django-admin.py startproject modoboa_example
$ cd modoboa_example
$ rm settings.py
$ rm urls.py
$ wget http://modoboa.org/resources/settings.py
$ wget http://modoboa.org/resources/urls.py
$ mkdir media

Then, edit the freshly downloaded settings.py file and adjust the
database relative information. (see Database).

Note

If you plan to serve Modoboa using a URL prefix, you must change the
value of the LOGIN_URL parameter to LOGIN_URL = '/<prefix>/accounts/login/'.

Finally, run the following commands:

$ python manage.py collectstatic
$ python manage.py syncdb --migrate --noinput
$ python manage.py loaddata initial_users.json

First use

Your installation should now have a default super administrator:

	Username: admin

	Password: password

It is strongly recommended to change this password the first time
you log into Modoboa.

To check if your installation works, just launch the embedded HTTP
server:

$ python manage.py runserver

You should be able to access Modoboa at http://locahost:8000/.

For a production environnement, we recommend using a stable webserver
like Apache2 or Nginx.

 Copyright 2013, Antoine Nguyen.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	0.9.5

 Upgrading an existing installation

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Modoboa 0.9.5 documentation

Upgrading an existing installation

This section contains all the upgrade procedures required to use
newest versions of Modoboa.

Note

Before running a migration, we recommend that you make
a copy of your existing database.

Latest version

Starting with version 0.9.1, Modoboa comes as a standard django
application. Fetch the latest version (see Get Modoboa) and
install it.

pip users, just run the following command:

$ pip install --upgrade modoboa

Then, follow the common procedure:

$ cd <modoboa_instance_dir>
$ python manage.py syncdb --migrate
$ python manage.py collectstatic

Finally, refer to this page to check if the version you’re installing
requires specific operations. If the version you’re looking for is not
present, it means nothing special is required.

0.9.4: administrative panel performance improved

	Edit the settings.py file and remove
'django.contrib.auth.backends.ModelBackend' from the
AUTHENTICATION_BACKENDS variable

0.9.1: standard django application and more

For this version, we recommend to install a new instance (see
Deployment) in a different directory.

Then, copy the following content from the old installation to the new
one:

	The media directory

	The directory containing RRD files if you use the Graphical statistics plugin

Don’t copy the old settings.py file, just keep the new one and
modify it (see Database and Time zone and language).

Migrate your database (see Latest version).

Finally, check the Amavisd-new frontend, Postifx auto-reply messages and
Graphical statistics chapters (depending on those you use) because the
provided cron scripts have been changed, you must update the way you
call them.

Modoboa 0.9 and prior

First, decompress the new tarball at the same location than your
current installation. Then, check if the new version you’re installing
requires a migration.

0.9: global UI refactoring, new limits extension and more

Note

This version requires at least django 1.3. Make sure to update your
version before starting to migrate.

Note

Many files have been renamed/removed for this version. I recommend
that you backup important files (settings.py, etc.) elsewhere
(ie. /tmp for example). Then, remove the modoboa directory,
extract the new tarball at the same place, rename the new directory
to modoboa and copy the files you’ve just backup into it.

Note

If the first super administrator you created is named admin,
its password will be changed to password at the end of this
upgrade. Don’t forget to modify it!

	Edit the settings.py file and update the following variables
(just copy/paste their new content):

MIDDLEWARE_CLASSES = (
 'django.middleware.common.CommonMiddleware',
 'django.contrib.sessions.middleware.SessionMiddleware',
 'django.contrib.auth.middleware.AuthenticationMiddleware',
 'django.contrib.messages.middleware.MessageMiddleware',
 'django.middleware.locale.LocaleMiddleware',
 'modoboa.lib.middleware.AjaxLoginRedirect',
 'modoboa.lib.middleware.CommonExceptionCatcher',
 'modoboa.lib.middleware.ExtControlMiddleware',
)

AUTHENTICATION_BACKENDS = (
 'modoboa.lib.authbackends.SimpleBackend',
 'django.contrib.auth.backends.ModelBackend',
)

	Add django.contrib.staticfiles to INSTALLED_APPS

	Add the following new variables:

STATIC_ROOT = os.path.join(MODOBOA_DIR, 'sitestatic')
STATIC_URL = '/sitestatic/'

	Update the following variables (just copy/paste their new values):

MEDIA_ROOT = os.path.join(MODOBOA_DIR, 'media')
MEDIA_URL = '/media/'

	For MySQL users only, add the following option to your database
configuration:

DATABASES = {
 "default" : {
 # ...
 # MySQL users only
 "OPTIONS" : {
 "init_command" : "SET foreign_key_checks = 0;",
 },
 }
}

	Add 'modoboa.extensions.limits' to INSTALLED_APPS

	Update your database (make sure to create a backup before launching
the following command):

$./manage.py syncdb --migrate

	Run the following command to initialize the directory that contains
static files:

$./manage.py collectstatic

	If you are using the stats extension, please rename the
<modoboa_dir>/static/stats directory to <modoboa_dir>/media/stats
and change the value of the IMG_ROOTDIR parameter (go to the adminstration panel)

	Restart the python instance(s) that serve Modoboa

	Log into Modoboa, go to Modoboa > Extensions, uncheck all
extensions, save. Then, check the extensions you want to use and
save again

	Update your webserver configuration to make static files available
(see Web servers)

	For Dovecot users only, you need to modify the
password_query (file /etc/dovecot/dovecot-sql.conf by default
on a Debian system) like this:

password_query = SELECT email AS user, password FROM auth_user WHERE email='%u'

0.8.8: CSV import feature and minor fixes

	Edit the settings.py file and add
'modoboa.lib.middleware.AjaxLoginRedirect' to the
MIDDLEWARE_CLASSES variable like this:

MIDDLEWARE_CLASSES = (
 'django.middleware.common.CommonMiddleware',
 'django.contrib.sessions.middleware.SessionMiddleware',
 'django.contrib.auth.middleware.AuthenticationMiddleware',
 'django.contrib.messages.middleware.MessageMiddleware',
 'django.middleware.locale.LocaleMiddleware',
 'modoboa.lib.middleware.AjaxLoginRedirect',
 'modoboa.lib.middleware.ExtControlMiddleware',
 'modoboa.extensions.webmail.middleware.WebmailErrorMiddleware',
)

	Still inside settings.py, modify the DATABASE_ROUTERS
variable like this:

DATABASE_ROUTERS = ["modoboa.extensions.amavis_quarantine.dbrouter.AmavisRouter"]

0.8.7: per-user language selection

	Edit the settings.py file and add the
'django.middleware.locale.LocaleMiddleware' middleware to the
MIDDLEWARE_CLASSES variable like this:

MIDDLEWARE_CLASSES = (
 'django.middleware.common.CommonMiddleware',
 'django.contrib.sessions.middleware.SessionMiddleware',
 'django.contrib.auth.middleware.AuthenticationMiddleware',
 'django.contrib.messages.middleware.MessageMiddleware',
 'django.middleware.locale.LocaleMiddleware',
 'modoboa.lib.middleware.ExtControlMiddleware',
 'modoboa.extensions.webmail.middleware.WebmailErrorMiddleware',
)

	To select a custom language, go to Options > Preferences and
select the general section. Choose a value, save and disconnect
from Modoboa. On the next login, the desired language will be used.

0.8.6.1: maintenance release

	If you have tried to create a new mailbox and if you have
encountered the following issue [http://dev.modoboa.org/ticket/163], you must run the
dbcleanup.py script in order to remove orphan records:

$ cd <modoboa_dir>
$ PYTHONPATH=$PWD/.. DJANGO_SETTINGS_MODULE=modoboa.settings ./admin/scripts/dbcleanup.py

0.8.6: Quarantine plugin refactoring (using Django’s ORM)

	Just update your configuration if you are using the quarantine
plugin. Open settings.py, move the database configuration from
the DB_CONNECTIONS variable to the DATABASES variable, like
this:

DATABASES = {
 "default" : {
 # The default database configuration
 },
 # ...
 "amavis": {
 "ENGINE" : "<your value>",
 "HOST" : "<your value>",
 "NAME" : "<your value>",
 "USER" : "<your value>",
 "PASSWORD" : "<your value>"
 }
}

	Add the new following variable somewhere in the file:

DATABASE_ROUTERS = ["modoboa.extensions.amavis_quarantine.dbrouter.AmavisRouter"]

	Remove the deprecated DB_CONNECTIONS variable from settings.py.

0.8.5: new “Sieve filters” plugin, improved admin app

	Migrate the lib and admin applications:

$ python manage.py migrate lib
$ python manage.py migrate admin

	Add modoboa.auth and modoboa.extensions.sievefilters to the
INSTALLED_APPS variable in settings.py.

	Go the Settings/Extensions panel, deactivate and activate your
extensions, it will update all the symbolic links.

0.8.4: folders manipulation support (webmail) and bugfixes

	Update the MIDDLEWARE_CLASSES variable in settings.py:

MIDDLEWARE_CLASSES = (
 'django.middleware.common.CommonMiddleware',
 'django.contrib.sessions.middleware.SessionMiddleware',
 'django.contrib.auth.middleware.AuthenticationMiddleware',
 'django.contrib.messages.middleware.MessageMiddleware',
 'modoboa.lib.middleware.ExtControlMiddleware',
 'modoboa.extensions.webmail.middleware.WebmailErrorMiddleware',
)

	Go the Settings/Extensions panel, deactivate and activate your
extensions, it will update all the symbolic links to the new format.

	Optional: update the DATABASES and TEMPLATE_LOADERS
variables in settings.py to remove warning messages (appearing with
Django 1.3):

DATABASES = {
 "default" : {
 "ENGINE" : "<your engine>",
 "NAME" : "modoboa",
 "USER" : "<your user>",
 "PASSWORD" : "<your password>",
 "HOST" : "",
 "PORT" : ""
 }
}

TEMPLATE_LOADERS = (
 'django.template.loaders.filesystem.Loader',
 'django.template.loaders.app_directories.Loader',
)

0.8.3: admin application refactoring and more

	Migrate the admin application:

$ python manage.py migrate admin

	Update SQL queries used in your environnement (see
Postfix or Dovecot).

	Update postfix configuration so that it can handle domain aliases
(see Postfix).

0.8.2: ckeditor integration and more

	Migrate the admin applicaton:

$ python manage.py migrate admin

	Update your config file and add all extensions to INSTALLED_APPS
(even those you are not going to use).

	Inside the <modoboa_dir>/templates/ directory, remove all symbolic links.

	Download the latest release of ckeditor and extract it into <modoboa_dir>/static/js/. It should create a new directory named ckeditor.

	Update the following variables inside settings.py:

MEDIA_ROOT = os.path.join(MODOBOA_DIR, 'static')
MEDIA_URL = '/static/'

	Then, add the following variable: MODOBOA_WEBPATH = 'modoboa/'

	Delete the following variables: STATIC_ROOTDIR and
TEMPLATE_CONTEXT_PROCESSORS.

	Finally, add modoboa.lib.middleware.ExtControlMiddleware to
MIDDLEWARE_CLASSES.

0.8.1 : project renamed

	First, rename the mailng directory to modoboa and copy all the
content from modoboa-0.8.1 to modoboa.

	Edit settings.py and replace all occurences of mailng by
modoboa. Make sure you don’t modify the DATABASE section as you’re
not going to rename your database.

	Rename the MAILNG_DIR variable to MODOBOA_DIR.

	Add 'django.contrib.messages.middleware.MessageMiddleware' to
MIDDLEWARE_CLASSES and 'django.contrib.messages' to
INSTALLED_APPS. Save your modifications.

	Run the following command:

$ python manage.py syncdb

	For all activated extensions, run the following command:

$ export PYTHONPATH=<modoboa_dir>/..=
$ DJANGO_SETTINGS_MODULE=modoboa.settings <modoboa_dir>/scripts/extension.py <extension> on

	Update your webserver configuration and restart it.

0.8 : SQL migration needed

Before you start the migration, make sure you have updated your
INSTALLED_APPS variable and that it contains at least:

INSTALLED_APPS = (
 # Django's stuff before

 'south',
 'mailng',
 'mailng.lib',
 'mailng.admin',
 'mailng.userprefs',
)

Starting with 0.8, mailng.main doesn’t exist anymore. You must remove
it from your INSTALLED_APPS.

Finally, run the following commands:

$ python manage.py syncdb
$ python manage.py convert_to_south
$ python manage.py migrate --all 0001 --fake
$ python manage.py migrate --all 0002

 Copyright 2013, Antoine Nguyen.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	0.9.5

 Configuration

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Modoboa 0.9.5 documentation

Configuration

Online parameters

Modoboa provides online panels to modify internal parameters. There
are two available levels:

	Application level: global parameters, define how the application
behaves. Available at Modoboa > Parameters

	User level: per user customization. Available at User > Settings >
Preferences

Regardless level, parameters are displayed using tabs, each tab
corresponding to one application.

admin application parameters

The admin application exposes several parameters, mainly to control
how mailboxes are created and how messages are stored on the file
system.

Default values are presented below:

The authentication type
AUTHENTICATION_TYPE = Local

Does Modoboa need to handle the creation of directories on the file system?
CREATE_DIRECTORIES = Yes

Where Modoboa stores mailboxes
STORAGE_PATH = /var/vmail

Which user:group Modoboa uses to assign permissions on mailboxes
VIRTUAL_UID = vmail
VIRTUAL_GID = vmail

Which format is used to store messages in a mailbox
MAILBOX_TYPE = maildir

If maildir is in use, tells Modoboa that mailbox content is under a
potential sub-directory
MAILDIR_ROOT = .maildir

When a mailbox is removed, also remove the associated account
AUTO_ACCOUNT_REMOVAL = No

The encryption method used to store passwords
PASSWORD_SCHEME = crypt

The number of displayed items per page for listing pages
ITEMS_PER_PAGE = 30

Host configuration

Note

This section is only relevant when the CREATE_DIRECTORIES
parameter is set to Yes.

To let Modoboa create mailboxes and store emails on the filesystem,
you must create a group and a user (UNIX ones). There is only one
group/user needed because we are in a virtual hosting configuration
(ie. users with non-UNIX accounts).

The following examples are based on the default values presented in
admin application parameters.

For example, create a vmail group:

$ groupadd vmail

Then create a vmail user:

$ useradd -g vmail -d /var/vmail -m vmail

At last, the system user used to run modoboa will need permissions to
manipulate directories in vmail’s homedir. To do so, edit the
/etc/sudoers file and add the following inside:

<user_that_runs_modoboa> ALL=(vmail) NOPASSWD: ALL

Time zone and language

Modoboa is available in english, french, german and spanish.

To specify the default language to use, edit the settings.py file
and modify the LANGUAGE_CODE variable:

LANGUAGE_CODE = 'en-US' # English
or
LANGUAGE_CODE = 'fr-FR' # French
or
LANGUAGE_CODE = 'de-DE' # German
or
LANGUAGE_CODE = 'es-ES' # Spanish

Note

Each user has the possibility to define the language he prefers.

In the same configuration file, specify the timezone to use by
modifying the TIME_ZONE variable. For example:

TIME_ZONE = 'Europe/Paris'

Sessions management

Modoboa uses Django’s session framework [https://docs.djangoproject.com/en/dev/topics/http/sessions/?from=olddocs]
to store per-user information.

Few parameters need to be set in the settings.py configuration
file to make Modoboa behave as expected:

SESSION_EXPIRE_AT_BROWSER_CLOSE = False # Default value
SESSION_COOKIE_AGE = 600 # time in seconds

The first parameter is optional but you must ensure it is set to
False (the default value).

The second one tells Django that a session inactive for this time
should be considered as closed. You are free to adjust it according to
your need.

The default configuration file provided by the modoboa-admin.py
command is properly configured.

Clearing the session table

Django does not provide automatic purging. Therefore, it’s your job to
purge expired sessions on a regular basis.

Django provides a sample clean-up script: django-admin.py
cleanup. That script deletes any session in the session table whose
expire_date is in the past.

For example, you could setup a cron job to run this script every night:

0 0 * * * <modoboa_site>/manage.py cleanup

External authentication

LDAP

Modoboa supports external LDAP authentication using the following extra components:

	Python LDAP client [http://www.python-ldap.org/]

	Django LDAP authentication backend [http://pypi.python.org/pypi/django-auth-ldap]

If you want to use this feature, you must first install those components:

$ pip install python-ldap django-auth-ldap

Then, all you have to do is to modify the settings.py file:

	Add a new authentication backend to the AUTHENTICATION_BACKENDS
variable, like this:

AUTHENTICATION_BACKENDS = (
 'modoboa.lib.authbackends.LDAPBackend',
 'modoboa.lib.authbackends.SimpleBackend',
)

	Set the required parameters to establish the communication with your
LDAP server, for example:

import ldap
from django_auth_ldap.config import LDAPSearch

AUTH_LDAP_SERVER_URI = "ldap://<ldap server address>"
AUTH_LDAP_BIND_DN = ""
AUTH_LDAP_BIND_PASSWORD = ""
LDAP_USER_BASE = "ou=users,dc=example,dc=com"
LDAP_USER_FILTER = "(mail=%(user)s)"
AUTH_LDAP_USER_SEARCH = LDAPSearch(LDAP_USER_BASE,
 ldap.SCOPE_SUBTREE, LDAP_USER_FILTER)

AUTH_LDAP_USER_ATTR_MAP = {
 "first_name": "givenName",
 "email": "mail",
 "last_name": "sn"
}

You will find a detailled documentation here [http://packages.python.org/django-auth-ldap/].

Finally, go to Modoboa > Parameters > admin, set the
AUTHENTICATION_TYPE parameter to LDAP and click on the Save
blue button.

Once the authentication is properly configured, the users defined in
your LDAP directory will be able to connect to Modoboa, the associated
domain and mailboxes will be automatically created if needed.

Users will also be able to update their LDAP password directly from
Modoboa.

Note

Modoboa doesn’t provide any synchronization mechanism once a user
is registered into the database. Any modification done from the
directory to a user account will not be reported to Modoboa (an
email address change for example). Currently, the only solution is
to manually delete the Modoboa record, it will be recreated on the
next user login.

Available settings

	LDAP_USER_BASE : the distinguish name of the search base

	LDAP_USER_FILTER : the filter used to retrieve users distinguish name

	LDAP_PASSWORD_ATTR : the attribute used to store the password
(default: userPassword)

	LDAP_ACTIVE_DIRECTORY : used to indicate if your directory is an
Active Directory one (default: False)

 Copyright 2013, Antoine Nguyen.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	0.9.5

 Using plugins

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Modoboa 0.9.5 documentation

Using plugins

Enable or disable a plugin

Modoboa provides an online panel to control plugins activation. You
will find it at Modoboa > Extensions.

To activate a plugin, check the corresponding box and click on the
Apply button.

To deactivate a plugin, uncheck the corresponding box and click on the
Apply button.

Per-admin limits

This plugin offers a way to define limits about how many objects
(aliases, mailboxes) a domain administrator can create.

It also brings a new administrative role: Reseller. A reseller is a domain
administrator that can also manipulates domains and assign permissions
to domain administrators.

If you don’t want to limit a particular object type, just set the
associated value to -1.

Amavisd-new frontend

This plugin provides a simple management frontend for amavisd-new [http://www.amavis.org]. The supported features are:

	SQL quarantine management : available to administrators or users,
possibility to delete or release messages

	Per domain customization (using policies): specify how amavisd-new
will handle traffic

Note

The per-domain policies feature only works for new
installations. Currently, you can’t use modoboa with an existing
database (ie. with data in users and policies tables).

Note

This plugin requires amavisd-new version 2.7.0 or higher. If
you’re planning to use the Self-service mode, you’ll need version
2.8.0.

Database

You must tell to Modoboa where it can find the amavis
database. Inside settings.py, add a new connection to the
DATABASES variable like this:

DATABASES = {
 # Stuff before
 #
 "amavis": {
 "ENGINE" : "<your value>",
 "HOST" : "<your value>",
 "NAME" : "<your value>",
 "USER" : "<your value>",
 "PASSWORD" : "<your value>"
 }
}

Replace values between <> with yours.

Note

Modoboa doesn’t create amavis tables. You need to install them
following the official documentation [http://www.amavis.org/#doc].

Cleanup

Storing quarantined messages to a database can quickly become a
perfomance killer. Modoboa provides a simple script to periodically
purge the quarantine database. To use it, add the following line
inside root’s crontab:

0 0 * * * <modoboa_site>/manage.py qcleanup

Replace modoboa_site with the path of your Modoboa instance.

By default, messages older than 14 days are automatically purged. You
can modify this value by changing the MAX_MESSAGES_AGE parameter
in the online panel.

Release messages

To release messages, first take a look at this page [http://www.ijs.si/software/amavisd/amavisd-new-docs.html#quar-release]. It
explains how to configure amavisd-new to listen somewhere for the
AM.PDP protocol. This protocol is used to send requests.

Below is an example of a working configuration:

$interface_policy{'SOCK'} = 'AM.PDP-SOCK';
$interface_policy{'9998'} = 'AM.PDP-INET';

$policy_bank{'AM.PDP-SOCK'} = {
 protocol => 'AM.PDP',
 auth_required_release => 0,
};
$policy_bank{'AM.PDP-INET'} = {
 protocol => 'AM.PDP',
 inet_acl => [qw(127.0.0.1 [::1])],
};

Don’t forget to update the inet_acl list if you plan to release from
the network.

Once amavisd-new is configured, just tell Modoboa where it can find
the release server by modifying the following parameters in the
online panel:

"unix" or "inet"
AM_PDP_MODE = "inet"

"unix" mode only
AM_PDP_SOCKET = "/var/amavis/amavisd.sock"

"inet" mode only
AM_PDP_HOST = "127.0.0.1"
AM_PDP_PORT = 9998

Deferred release

By default, simple users are not allowed to release messages
themselves. They are only allowed to send release requests to
administrators.

As administrators are not always available or logged into Modoboa, a
notification tool is available. It sends reminder e-mails to every
administrators or domain administrators. To use it, add the following
example line to root’s crontab:

0 12 * * * <modoboa_site>/manage.py amnotify --baseurl='<modoboa_url>'

You are free to change the frequency.

Note

If you want to let users release their messages alone (not
recommended), change the value of the USER_CAN_RELEASE parameter
into the admin panel.

Self-service mode

The self-service mode let users act on quarantined messages without
beeing authenticated. They can:

	View messages

	Remove messages

	Release messages (or send release requests)

To access a specific message, they only need the following information:

	Message’s unique identifier

	Message’s secret identifier

This information is controlled by amavis, which is in charge of
notifying users when new messages are put into quarantine. Each
notification (one per message) must embark a direct link containing
the required identifiers.

To activate this feature, go the administration panel and set the
SELF_SERVICE paramater to yes.

The last step is to customize the notification messages amavis
sends. The most important is to embark a direct link. Take a look at
the README.customize [http://amavis.org/README.customize.txt] file to
learn what you’re allowed to do.

Here is a link example:

http://<modoboa_url>/quarantine/%i/?rcpt=%R&secret_id=[:secret_id]

Graphical statistics

This plugin collects various statistics about emails traffic on your
server. It parses a log file to collect information, store it into RRD
files (see rrdtool [http://oss.oetiker.ch/rrdtool/])and then
generates graphics in PNG format.

To use it, go to the online parameters panel and adapt the following
ones to your environnement:

Path to mail log file
LOGFILE = "/var/log/mail.log"

Path to directory where rrd files are stored
RRD_ROOTDIR = "/tmp/modoboa"

Path to directory where png files are stored
IMG_ROOTDIR = "<modoboa_site>/media/stats"

Make sure the directory that will contain RRD files exists
(RRD_ROOTDIR). If not, create it before going further. For example
(according to the previous parameters):

$ mkdir /tmp/modoboa

To finish, you need to collect information periodically in order to
feed the RRD files. Add the following line into root’s crontab:

*/5 * * * * <modoboa_site>/manage.py logparser &> /dev/null

Replace <modoboa_site> with the path of your Modoboa instance.

Graphics will be automatically created after each parsing.

Postifx auto-reply messages

This plugin let users define an auto-reply message (vacation). It is
based on postfix capabilities.

The user that executes the autoreply script needs to access
settings.py. You must apply proper permissions on this file. For
example, if settings.py belongs to www-data:www-data, you can add
the vmail user to the www-data group and set the read permission
for the group.

To make postfix use this feature, you need to update your
configuration files as follow:

/etc/postfix/main.cf:

transport_maps = mysql:/etc/postfix/maps/sql-transport.cf
virtual_alias_maps = mysql:/etc/postfix/maps/sql-aliases.cf
 mysql:/etc/postfix/maps/sql-autoreplies.cf

/etc/postfix/master.cf:

autoreply unix - n n - - pipe
 flags= user=vmail:<group> argv=<modoboa_site>/manage.py autoreply $sender $mailbox

<modoboa_site> is the path of your Modoboa instance.

Then, create the requested map files:

$ modoboa-admin.py postfix_maps mapfiles --categories autoreply

mapfiles is the directory where the files will be stored. Answer the
few questions and you’re done.

Note

Auto-reply messages are just sent one time per sender for a
pre-defined time period. By default, this period is equal to 1 day
(86400s), you can adjust this value by modifying the AUTOREPLY_TIMEOUT
parameter available in the online panel.

Sieve filters

This plugin let users create server-side message filters, using the
sievelib module [http://pypi.python.org/pypi/sievelib] (which
provides Sieve and ManageSieve clients).

Two working modes are available:

	A raw mode: you create filters using the Sieve language directly
(advanced users)

	An assisted mode: you create filters using an intuitive form

To use this plugin, your hosting setup must include a ManageSieve
server and your local delivery agent must understand the Sieve
language. Don’t panic, Dovecot supports both :-) (refer to
Dovecot to know how to enable those features).

Note

The sieve filters plugin requires that the Webmail plugin is
activated and configured.

Go the online panel and modify the following parameters in order to
communicate with the ManageSieve server (default values are displayed
below):

SERVER = localhost
PORT = 2000
STARTTLS = no
AUTHENTICATION_MECH = plain

Webmail

Modoboa provides a simple webmail:

	Browse, read and compose messages, attachments are supported

	HTML messages are supported

	CKeditor [http://ckeditor.com/] integration

	Manipulate mailboxes (create, move, remove)

	Quota display

To use it, go to the online panel and modify the following parameters
in order to communicate with your IMAP and SMTP servers (default
values are displayed below):

IMAP_SECURED = no
IMAP_SERVER = 127.0.0.1
IMAP_PORT = 143

SMTP_SECURED_MODE = None
SMTP_AUTHENTICATION = no
SMTP_SERVER = 127.0.0.1
SMTP_PORT = 25

The size of each attachment sent with messages is limited. You can
change the default value by modifying the MAX_ATTACHMENT_SIZE
parameter.

Using CKeditor

Modoboa supports CKeditor to compose HTML messages. To use it, first
download it from the official website [http://ckeditor.com/], then
extract the tarball:

$ cd <modoboa_site_dir>
$ tar xzf /path/to/ckeditor/tarball.tag.gz -C sitestatic/js/

And you’re done!

Now, each user has the possibility to choose between CKeditor and the
raw text editor to compose their messages. (see User > Settings >
Preferences > Webmail)

 Copyright 2013, Antoine Nguyen.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	0.9.5

 SMTP servers

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Modoboa 0.9.5 documentation

SMTP servers

Postfix

This section gives an example about building a simple virtual hosting
configuration with Postfix. Refer to the official documentation [http://www.postfix.org/VIRTUAL_README.html] for more explanation.

Map files

You first need to create configuration files (or map files) that will
be used by postfix to lookup into Modoboa tables.

Automatic generation

To automaticaly generate the requested map files and store them in a
directory, run the following command:

$ modoboa-admin.py postfix_maps --dbtype <mysql|postgres> mapfiles

mapfiles is the directory where the files will be stored. Answer the
few questions and you’re done.

Manual generation

Note

The SQL queries presented below are working only with MySQL
only. To make them work with PostgreSQL, just replace (when needed)
the concat function call by the standard concatenation operator
(ie. ||).

Define the following map files on your server (it should work with
postfix versions >= 2.2):

/etc/postfix/sql-domains.cf:

user = <user>
password = <password>
dbname = <database>
hosts = 127.0.0.1
query = SELECT name FROM admin_domain WHERE name='%s' AND enabled=1

/etc/postfix/sql-domain-aliases.cf:

user = <user>
password = <password>
dbname = <database>
hosts = 127.0.0.1
query = SELECT dom.name FROM admin_domain dom INNER JOIN admin_domainalias domal ON dom.id=domal.target_id WHERE domal.name='%s' AND domal.enabled=1 AND dom.enabled=1

/etc/postfix/sql-mailboxes.cf:

user = <user>
password = <password>
dbname = <database>
hosts = 127.0.0.1
query = SELECT concat(dom.name, '/', mb.path, (SELECT value FROM lib_parameter WHERE name='admin.MAILDIR_ROOT'), '/') FROM admin_mailbox mb INNER JOIN admin_domain dom ON mb.domain_id=dom.id INNER JOIN auth_user user ON mb.user_id=user.id WHERE dom.enabled=1 AND dom.name='%d' AND user.is_active=1 AND mb.address='%u'

/etc/postfix/sql-aliases.cf:

user = <user>
password = <password>
dbname = <database>
hosts = 127.0.0.1
query = (SELECT concat(mb.address, '@', dom.name) FROM admin_mailbox mb INNER JOIN admin_domain dom ON mb.domain_id=dom.id WHERE mb.id IN (SELECT al_mb.mailbox_id FROM admin_alias_mboxes al_mb INNER JOIN admin_alias al ON al_mb.alias_id=al.id INNER JOIN admin_domain dom ON al.domain_id=dom.id WHERE dom.name='%d' AND dom.enabled=1 AND al.address='%u' AND al.enabled=1)) UNION (SELECT al.extmboxes FROM admin_alias al INNER JOIN admin_domain dom ON al.domain_id=dom.id WHERE dom.name='%d' AND dom.enabled=1 AND al.address='%u' AND al.enabled=1 AND al.extmboxes<>'')

/etc/postfix/sql-domain-aliases-mailboxes.cf:

user = <user>
password = <password>
dbname = <database>
hosts = 127.0.0.1
query = SELECT DISTINCT concat(mb.address, '@', dom.name) FROM admin_alias al INNER JOIN admin_domain dom ON dom.id=al.domain_id INNER JOIN admin_domainalias domal ON domal.target_id=dom.id INNER JOIN (admin_alias_mboxes almb, admin_mailbox mb) ON (almb.alias_id=al.id AND almb.mailbox_id=mb.id) WHERE domal.name='%d' AND domal.enabled=1 AND (al.address='%u' OR mb.address='%u')

/etc/postfix/sql-email2email.cf:

user = <user>
password = <password>
dbname = <database>
hosts = 127.0.0.1
query = SELECT concat(mb.address, '@', dom.name) FROM admin_mailbox mb INNER JOIN admin_domain dom ON mb.domain_id=dom.id INNER JOIN auth_user user ON mb.user_id=user.id WHERE dom.name='%d' AND dom.enabled=1 AND mb.address='%u' AND user.is_active=1

/etc/postfix/sql-catchall-aliases.cf:

user = <user>
password = <password>
dbname = <database>
hosts = 127.0.0.1
query = (SELECT concat(mb.address, '@', dom.name) FROM admin_mailbox mb INNER JOIN admin_domain dom ON mb.domain_id=dom.id WHERE mb.id IN (SELECT al_mb.mailbox_id FROM admin_alias al INNER JOIN admin_domain dom ON al.domain_id=dom.id INNER JOIN admin_alias_mboxes al_mb ON al.id=al_mb.alias_id WHERE al.enabled=1 AND al.address='*' AND dom.name='%d' AND dom.enabled=1)) UNION (SELECT al.extmboxes FROM admin_alias al INNER JOIN admin_domain dom ON al.domain_id=dom.id WHERE al.enabled='1' AND al.extmboxes<>'' AND al.address='*' AND dom.name='%d' AND dom.enabled=1)

Configuration

Use the following configuration in the /etc/postfix/main.cf file
(this is just one possible configuration):

Stuff before
mailbox_transport = virtual
maildrop_destination_recipient_limit = 1
virtual_minimum_uid = <vmail user id>
virtual_gid_maps = static:<vmail group id>
virtual_uid_maps = static:<vmail user id>
virtual_mailbox_base = /var/vmail

relay_domains =
virtual_mailbox_domains = mysql:/etc/postfix/sql-domains.cf
virtual_alias_domains = mysql:/etc/postfix/sql-domain-aliases.cf
virtual_mailbox_maps = mysql:/etc/postfix/sql-mailboxes.cf
virtual_alias_maps = mysql:/etc/postfix/sql-aliases.cf,
 mysql:/etc/postfix/sql-domain-aliases-mailboxes.cf,
 mysql:/etc/postfix/sql-email2email.cf,
 mysql:/etc/postfix/sql-catchall-aliases.cf

Stuff after

Note

Modoboa supports both maildir and mbox formats. You can specify
which format to use by modifying the MAILBOX_TYPE parameter available
in the admin panel.

Recommended: using Dovecot’s LDA

If you are using Dovecot in your environnement, we recommend to use
its LDA. Doing so, you’ll will be able to use extra functionalities
such as sieve filters and more.

First, edit the /etc/postfix/main.cf file and define (or modify if
they already exist) the following parameters:

virtual_transport = dovecot
dovecot_destination_recipient_limit = 1

Then, edit the /etc/postfix/master.cf file and add the following
definition at the end:

dovecot unix - n n - - pipe
 flags=DRhu user=vmail:vmail argv=/usr/lib/dovecot/deliver -f ${sender} -d ${recipient}

If you have followed the Manual generation section to install your
environnement, you need to modify the SQL query corresponding to the
virtual_mailbox_maps parameter. Edit the
/etc/postfix/maps/sql-mailboxes.cf and modify the query
parameter as follow:

query = SELECT concat(dom.name, '/', mb.path) FROM admin_mailbox mb INNER JOIN admin_domain dom ON mb.domain_id=dom.id INNER JOIN auth_user user ON mb.user_id=user.id WHERE dom.enabled=1 AND dom.name='%d' AND user.is_active=1 AND mb.address='%u'

Restart Postfix.

 Copyright 2013, Antoine Nguyen.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	0.9.5

 IMAP servers

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Modoboa 0.9.5 documentation

IMAP servers

Dovecot

If you are using the maildir format to store mailboxes, add the
following line into Dovecot’s main config file
(/etc/dovecot/dovecot.conf):

mail_location = maildir:<path_to_mailboxes>/%h/.maildir

The .maildir part is the previous example must match the value of
the MAILDIR_ROOT parameter. See admin application parameters.

If you are using the mbox format, add the following:

mail_location = mbox:<path_to_mailboxes>/%h/:INBOX=<path_to_mailboxes>/%h/Inbox

To make the authentication work, edit dovecot.conf and add the
following content inside:

auth default {
 # ... stuff before

 passdb sql {
 # Path for SQL configuration file, see /etc/dovecot/dovecot-sql.conf for
 # example
 args = /etc/dovecot/dovecot-sql.conf
 }

 userdb sql {
 # Path for SQL configuration file
 args = /etc/dovecot/dovecot-sql.conf
 }

 # ... stuff after
}

Make sure to activate only one backend (per type) inside your configuration
(just comment the other ones).

For MySQL users, edit your /etc/dovecot/dovecot-sql.conf and modify following lines:

driver = mysql
connect = host=<mysqld socket> dbname=<database> user=<user> password=<password>
default_pass_scheme = CRYPT
password_query = SELECT email AS user, password FROM auth_user WHERE email='%u' and is_active=1
user_query = SELECT concat(dom.name, '/', mb.path) AS home, uid, gid FROM admin_mailbox mb INNER JOIN auth_user user ON mb.user_id=user.id INNER JOIN admin_domain dom ON mb.domain_id=dom.id WHERE mb.address='%n' AND dom.name='%d' AND user.is_active=1 AND dom.enabled=1

Enable quota support

Put the following lines inside the dovecot.conf file:

protocol imap {
 mail_plugins = quota imap_quota
}

Before continuing, you need to know which quota backend must be used
(function of mailboxes format):

	mbox : backend=dirsize,

	maildir : backend=maildir.

If you use version prior to 1.1, add also the following configuration:

plugin {
 # 10 MB default quota limit
 quota = <backend>:storage=10240
}

For MySQL users, modify the above query inside dovecot-sql.conf as
follow to activate per-user quotas:

user_query = SELECT concat(dom.name, '/', mb.path) AS home, uid, gid, concat('<backend>:storage=', mb.quota / 1024) AS quota FROM admin_mailbox mb INNER JOIN admin_domain dom ON mb.domain_id=dom.id WHERE mb.address='%n' AND dom.name='%d'

For version >= 1.1, put the following configuration inside the dovecot.conf file:

plugin {
 # Default 10M storage limit with an extra 5M limit when saving to Trash.
 quota = <backend>:User quota
 quota_rule = *:storage=10M
 quota_rule2 = Trash:storage=5M
}

For MySQL users, modify the above query inside dovecot-sql.conf to
activate per-user quotas:

user_query = SELECT concat(dom.name, '/', mb.path) AS home, uid, gid, concat('*:storage=', mb.quota, 'M') AS quota_rule FROM admin_mailbox mb INNER JOIN admin_domain dom ON mb.domain_id=dom.id WHERE mb.address='%n' AND dom.name='%d'

Enable ManageSieve/Sieve support

Note

The following configuration example should work with versions
1.X. For versions >= 2, please refer to Dovecot’s wiki [http://wiki2.dovecot.org/].

Edit the /etc/dovecot/dovecot.conf file and make the following
modifications:

	Add managesieve to the protocols variable:

protocols = imap imaps managesieve

	Uncomment the managesieve section:

protocol managesieve {
 # ...
}

	Configure the lda protocol as follow:

protocol lda {
 postmaster_address = postmaster@<your domain>
 mail_plugins = sieve # + your other plugins
 # ...
}

	In the plugin section, uncomment the following content:

plugin {
 # stuff before

 # Location of the active script. When ManageSieve is used this is actually
 # a symlink pointing to the active script in the sieve storage directory.
 sieve=~/.dovecot.sieve

 #
 # The path to the directory where the personal Sieve scripts are stored. For
 # ManageSieve this is where the uploaded scripts are stored.
 sieve_dir=~/sieve
}

Restart Dovecot.

Note

If you’re using Postfix as MTA, you have to use Dovecot‘s local
delivery agent otherwise your emails won’t get filtered. See
Recommended: using Dovecot’s LDA to get information on how to activate it.

 Copyright 2013, Antoine Nguyen.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	0.9.5

 Web servers

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Modoboa 0.9.5 documentation

Web servers

Apache2

mod_wgsi

First, make sure that mod_wsgi is installed on your server.

Create a new virtualhost in your Apache configuration and put the
following content inside:

<VirtualHost *:80>
 ServerName <your value>
 DocumentRoot <path to your site's dir>

 Alias /media/ <path to your site's dir>/media/
 <Directory <path to your site's dir>/media>
 Order deny,allow
 Allow from all
 </Directory>

 Alias /sitestatic/ <path to your site's dir>/sitestatic/
 <Directory <path to your site's dir>/sitestatic>
 Order deny,allow
 Allow from all
 </Directory>

 WSGIScriptAlias / <path to your site's dir>/wsgi.py
</VirtualHost>

This is just one possible configuration.

Note

Django 1.3 users, please consult this page [https://docs.djangoproject.com/en/1.3/howto/deployment/modwsgi/],
it contains an example wsgi.py file.

Note

You will certainly need more configuration in order to launch
Apache.

mod_python

First, make sure that mod_python is installed on your server.

Create a new virtualhost in your Apache configuration and put the
following content inside:

<VirtualHost *:80>
 ServerName <your value>
 DocumentRoot <path to your site's dir>

 <Location "/">
 SetHandler mod_python
 PythonHandler django.core.handlers.modpython
 PythonPath "['<path to directory that contains your site's dir>'] + sys.path"
 SetEnv DJANGO_SETTINGS_MODULE <your site's name>.settings
 </Location>

 Alias "/sitestatic" "<path to your site's dir>/sitestatic"
 <Location "/sitestatic/">
 SetHandler None
 </Location>

 Alias "/media" "<path to your site's dir>/media"
 <Location "/media/">
 SetHandler None
 </Location>
</VirtualHost>

This is just one possible configuration.

Note

You will certainly need more configuration in order to launch
Apache.

Nginx

Nginx [http://nginx.org/] is a really fast HTTP server. Associated
with Green Unicorn [http://gunicorn.org/], it gives you one of the
best setup to serve python/Django applications. Modoboa’s
performances are really good with this configuration.

To use this setup, first download and install those softwares
(Install gunicorn [http://gunicorn.org/install.html] and install
nginx [http://wiki.nginx.org/Install]).

Then, use the following sample gunicorn configuration (create a new
file named gunicorn.conf.py inside Modoboa’s root dir):

backlog = 2048
bind = "unix:/var/run/gunicorn/modoboa.sock"
pidfile = "/var/run/gunicorn/modoboa.pid"
daemon = True
debug = False
workers = 2
logfile = "/var/log/gunicorn/modoboa.log"
loglevel = "info"

To start gunicorn, execute the following commands:

$ cd <modoboa dir>
$ gunicorn_django -c gunicorn.conf.py

Now the nginx part. Just create a new virtual host and use the
following configuration:

upstream modoboa {
 server unix:/var/run/gunicorn/modoboa.sock fail_timeout=0;
}

server {
 listen 443;
 server_name <host fqdn>;
 root <modoboa's root dir>;

 access_log /var/log/nginx/<host fqdn>.access.log;
 error_log /var/log/nginx/<host fqdn>.error.log;

 location /sitestatic/ {
 autoindex on;
 }

 location /media/ {
 autoindex on;
 }

 location / {
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header Host $http_host;
 proxy_redirect off;
 proxy_set_header X-Forwarded-Protocol ssl;
 proxy_pass http://modoboa;
 }
}

Paste this content to your configuration (replace values between
<> with yours), restart nginx and enjoy a really fast
application!

 Copyright 2013, Antoine Nguyen.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	0.9.5

 Adding a new plugin

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Modoboa 0.9.5 documentation

Adding a new plugin

Introduction

Modoboa offers a plugin API to expand its capabilities. The current
implementation provides the following possibilities:

	Expand navigation by adding entry points to your plugin inside the GUI

	Access and modify administrative objects (domains, mailboxes, etc.)

	Register callback actions for specific events

Plugins are nothing more than Django applications with an extra piece
of code that integrates them into Modoboa. Usually, the __init__.py file
will contain a complete description of the plugin:

	Admin and user parameters

	Observed events

	Custom menu entries

The communication between both applications is provided by
Available events. Modoboa offers some kind of hooks to let plugin add custom
actions.

The following subsections describe plugin architecture and explain
how you can create your own plugin.

The required glue

To create a new plugin, just start a new django application like
this (into modoboa’s directory):

$ python manage.py startapp

Then, you need to register this application using the provided
API. Just copy/paste the following example into the __init__.py file
of the future extension:

from modoboa.extensions import ModoExtension, exts_pool

class MyExtension(ModoExtension):
 name = "myext"
 label = "My Extension"
 version = "0.1"
 description = "A description"
 url = "myext_root_location" # optional, name is used if not defined

 def init(self):
 """This method is called when the extension is activated.
 """
 pass

 def load(self):
 """This method is called when Modoboa loads available and activated plugins.

 Declare parameters and register events here.
 """
 pass

 def destroy(self):
 """This function is called when a plugin is disabled from the interface.

 Unregister parameters and events here.
 """
 pass

exts_pool.register_extension(MyExtension)

Once done, simply add your plugin’s module name to the
INSTALLED_APPS variable located inside settings.py. Optionaly,
run python manage.py syncdb if your plugin provides custom tables
and python manage.py collectstatic to update static files.

Parameters

A plugin can declare its own parameters. There are two levels available:

	‘Administration’ parameters : used to configure the plugin, editable
inside the Admin > Settings > Parameters page,

	‘User’ parameters : per-user parameters (or preferences), editable
inside the Options > Preferences page.

Playing with parameters

To declare a new administration parameter, use the following function:

from modoboa.lib import parameters

parameters.register_admin(name, **kwargs)

To declare a new user parameter, use the following function:

parameter.register_user(name, **kwargs)

Both functions accept extra arguments listed here:

	type : parameter’s type, possible values are : int, string, list, list_yesno,

	deflt : default value,

	help : help text,

	values : list of possible values if type is list.

To undeclare parameters (for example when a plugin is disabled is
disabled from the interface), use the following function:

parameters.unregister_app(appname)

appname corresponds to your plugin’s name, ie. the name of the
directory containing the source code.

Custom administrative roles

Modoboa uses Django’s internal permission system. Administrative roles
are nothing more than groups (Group instances).

If an extension needs to add new roles, it needs to follow those steps:

	Create a new Group instance. It can be done by providing
fixtures [https://docs.djangoproject.com/en/dev/howto/initial-data/]
or by creating it into the extension init function

	A a new listener for the GetExtraRoles event that will return
the group’s name

 Copyright 2013, Antoine Nguyen.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	0.9.5

 Available events

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Modoboa 0.9.5 documentation

Available events

Introduction

Modoboa provides a simple API to interact with events. It understands
two kinds of events:

	Those that return a value

	Those that return nothing

Listening to a specific event is achieved as follow:

from modoboa.lib import events

def callback(*args):
 pass

events.register('event', callback)

You can also use the custom decorator events.observe:

@events.observe('event')
def callback(*args):
 pass

event is the event’s name you want to listen to, callback is
the function that will be called each time this event is raised. Each
event impose to callbacks a specific prototype to respect. See below
for a detailled list.

To stop listening to as specific event, you must use the
unregister function:

events.unregister('event', callback)

The parameters are the same than those used with register.

Read further to get a complete list and description of all available events.

Supported events

AccountCreated

Raised when a new account is created.

Callback prototype:

def callback(account): pass

	account is the newly created account (User instance)

AccountDeleted

Raised when an existing account is deleted.

Callback prototype:

def callback(account): pass

	oldaccount is the account that is going to be deleted

AccountModified

Raised when an existing account is modified.

Callback prototype:

def callback(oldaccount, newaccount): pass

	oldaccount is the account before it is modified

	newaccount is the account after the modification

AdminMenuDisplay

Raised when an admin menu is about to be displayed.

Callback prototype:

def callback(target, user): pass

The target argument indicates which menu is being
displayed. Possible values are:

	admin_menu_box : corresponds to the menu bar available inside administration pages

	top_menu : corresponds to the top black bar

See UserMenuDisplay for a description of what callbacks that
listen to this event must return.

CanCreate

Raised just before a user tries to create a new object.

Callback prototype:

def callback(user): pass

	user is a User instance

Return True or False to indicate if this user can respectively
create or not create a new Domain object.

CheckExtraAccountForm

When an account is being modified, this event lets extensions check if
this account is concerned by a specific form.

Callback prototype:

def callback(account, form): pass

	account is the User instance beeing modified

	form is a dictionnary (same content as for ExtraAccountForm)

Callbacks listening to this event must return a list containing one
Boolean.

CreateDomain

Raised when a new domain is created.

Callback prototype:

def callback(user, domain): pass

	user corresponds to the User object creating the domain (its owner)

	domain is a Domain instance

CreateMailbox

Raised when a new mailbox is created.

Callback prototype:

def callback(user, mailbox): pass

	user is the new mailbox’s owner (User instance)

	mailbox is the new mailbox (Mailbox instance)

DeleteDomain

Raised when an existing domain is about to be deleted.

Callback prototype:

def callback(domain): pass

	domain is a Domain instance

DeleteMailbox

Raised when an existing mailbox is about to be deleted.

Callback prototype:

def callback(mailbox): pass

	mailbox is a Mailbox instance

DomainAliasCreated

Raised when a new domain alias is created.

Callback prototype:

def callback(user, domain_alias): pass

	user is the new domain alias owner (User instance)

	domain_alias is the new domain alias (DomainAlias instance)

DomainAliasDeleted

Raised when an existing domain alias is about to be deleted.

Callback prototype:

def callback(domain_alias): pass

	domain_alias is a DomainAlias instance

DomainModified

Raised when a domain has been modified.

Callback prototype:

def callback(domain): pass

	domain is the modified Domain instance, it contains an extra
oldname field which contains the old domain name

ExtDisabled

Raised just after an extension has been disabled.

Callback prototype:

def callback(extension): pass

	extension is an Extension instance

ExtEnabled

Raised just after an extension has been activated.

Callback prototype:

def callback(extension): pass

	extension is an Extension instance

ExtraAccountForm

Let extensions add new forms to the account edition form (the one with
tabs).

Callback prototype:

def callback(user, account): pass

	user is a User instance corresponding to the currently
logged in user

	account is the account beeing modified (User instance)

Callbacks listening to the event must return a list of dictionnaries,
each one must contain at least three keys:

{"id" : "<the form's id>",
 "title" : "<the title used to present the form>",
 "cls" : TheFormClassName}

ExtraAdminContent

Let extensions add extra content into the admin panel.

Callback prototype:

def callback(user, target, currentpage): pass

	user is a User instance corresponding to the currently
logged in user

	target is a string indicating the place where the content will
be displayed. Possible values are : leftcol

	currentpage is a string indicating which page (or section) is
displayed. Possible values are : domains, identities

Callbacks listening to this event must return a list of string.

ExtraDomainForm

Let extensions add new forms to the domain edition form (the one with
tabs).

Callback prototype:

def callback(user, domain): pass

	user is a User instance corresponding to the currently
logged in user

	domain is the domain beeing modified (Domain instance)

Callbacks listening to the event must return a list of dictionnaries,
each one must contain at least three keys:

{"id" : "<the form's id>",
 "title" : "<the title used to present the form>",
 "cls" : TheFormClassName}

FillAccountInstances

When an account is beeing modified, this event is raised to fill extra
forms.

Callback prototype:

def callback(user, account, instances): pass

	user is a User instance corresponding to the currently
logged in user

	account is the User instance beeing modified

	instances is a dictionnary where the callback will add
information needed to fill a specific form

FillDomainInstances

When a domain is beeing modified, this event is raised to fill extra
forms.

Callback prototype:

def callback(user, domain, instances): pass

	user is a User instance corresponding to the currently
logged in user

	domain is the Domain instance beeing modified

	instances is a dictionnary where the callback will add
information needed to fill a specific form

GetAnnouncement

Some places in the interface let plugins add their own announcement
(ie. message).

Callback prototype:

def callback(target): pass

	target is a string indicating the place where the announcement
will appear:

	loginpage : corresponds to the login page

Callbacks listening to this event must return a list of string.

GetExtraRoles

Let extensions define new administrative roles.

Callback prototype:

def callback(user): pass

	user is a User instance corresponding to the currently
logged in user

Callbacks listening to this event must return a list of 2uple (two
strings) which respect the following format: (value, label).

GetStaticContent

Let extensions add static content (ie. CSS or javascript) to default
pages. It is pretty useful for functionalities that don’t need a
template but need javascript stuff.

Callback prototype:

def callback(user): pass

	user is a User instance corresponding to the currently
logged in user

Callbacks listening to this event must return a list of string.

MailboxAliasCreated

Raised when a new mailbox alias is created.

Callback prototype:

def callback(user, mailbox_alias): pass

	user is the new domain alias owner (User instance)

	mailbox_alias is the new mailbox alias (Alias instance)

MailboxAliasDeleted

Raised when an existing mailbox alias is about to be deleted.

Callback prototype:

def callback(mailbox_alias): pass

	mailbox_alias is an Alias instance

ModifyMailbox

Raised when an existing mailbox is modified.

Callback prototype:

def callback(newmailbox, oldmailbox): pass

	newmailbox is a Mailbox instance containing the new values

	oldmailbox is a Mailbox instance containing the old values

PasswordChange

Raised just before a password change action.

Callback prototype:

def callback(user): pass

	user is a User instance

Callbacks listening to this event must return a list containing either
True or False. If at least one True is returned, the
password change will be cancelled (ie. changing the password for
this user is disabled).

TopNotifications

Let extensions add custom content into the top bar.

Callback prototype:

def callback(user): pass

	user is a User instance corresponding to the currently
logged in user

Callbacks listening to this event must return a list of string.

UserLogin

Raised when a user logs in.

Callback prototype:

def callback(request, username, password): pass

UserLogout

Raised when a user logs out.

Callback prototype:

def callback(request): pass

UserMenuDisplay

Raised when a user menu is about to be displayed.

Callback prototype:

def callback(target, user): pass

The target argument indicates which menu is being
displayed. Possible values are:

	options_menu: corresponds to the top-right user menu

	uprefs_menu: corresponds to the menu bar available inside the
User preferences page

	top_menu: corresponds to the top black bar

All the callbacks that listen to this event must return a list of
dictionnaries (corresponding to menu entries). Each dictionnary must
contain at least the following keys:

{"name" : "a_name_without_spaces",
 "label" : _("The menu label"),
 "url" : reverse("your_view")}

 Copyright 2013, Antoine Nguyen.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	0.9.5

 Migrating from other software

 Navigatio